Vai al contenuto principale della pagina
Autore: | Niemann Peter <1965-> |
Titolo: | Some generalized Kac-Moody algebras with known root multiplicities / / Peter Niemann |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , 2002 |
Descrizione fisica: | 1 online resource (137 p.) |
Disciplina: | 510 s |
512/.55 | |
Soggetto topico: | Kac-Moody algebras |
Root systems (Algebra) | |
Note generali: | "Volume 157, number 746 (second of 5 numbers)." |
Nota di bibliografia: | Includes bibliographical references. |
Nota di contenuto: | ""Contents""; ""Introduction""; ""Chapter 1. Generalized Kac-Moody Algebras""; ""1.1. Definition and Fundamental Properties""; ""1.2. The Denominator Formula""; ""1.3. Vertex Algebras""; ""1.4. The Fake Monster Lie Algebra""; ""1.5. The Twisted Denominator Formula""; ""1.6. Construction of the GKMs""; ""1.7. Root Multiplicities""; ""Chapter 2. Modular Forms""; ""2.1. Review of Modular Group and Modular Forms""; ""2.2. Some Modular Forms Related to Eta""; ""Chapter 3. Lattices and their Theta-Functions""; ""3.1. Review of Results about Lattices""; ""3.2. The Character of Theta"" |
""Chapter 4. The Proof of Theorem 1.7""""4.1. The Theta-Function of L*""; ""4.2. Sums of Quadratic Residues""; ""4.3. The Short Vectors of L*""; ""4.4. The Conclusion of the Proof""; ""Chapter 5. The Real Simple Roots""; ""5.1. The Set of Real Simple Roots""; ""5.2. Holes and Dynkin Diagrams""; ""5.3. The Volume Formula""; ""5.4. The Automorphism Groups""; ""Chapter 6. Hyperbolic Lie Algebras""; ""6.1. Wan's classification""; ""6.2. Finite, Affine, and Hyperbolic Subalgebras""; ""6.3. Conclusions""; ""Appendix A""; ""N=23""; ""N=11""; ""N=7""; ""N=5""; ""N=3""; ""N=2""; ""Appendix B"" | |
""Bibliography""""Notation"" | |
Titolo autorizzato: | Some generalized Kac-Moody algebras with known root multiplicities |
ISBN: | 1-4704-0339-0 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910788846103321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |