Vai al contenuto principale della pagina
Autore: | Loos Ottmar |
Titolo: | Locally finite root systems / / Ottmar Loos, Erhard Neher |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , 2004 |
©2004 | |
Descrizione fisica: | 1 online resource (232 p.) |
Disciplina: | 512/.482 |
Soggetto topico: | Lie superalgebras |
Root systems (Algebra) | |
Persona (resp. second.): | NeherErhard <1949-> |
Note generali: | "Volume 171, Number 811 (end of volume)." |
Nota di bibliografia: | Includes bibliographical references and indexes. |
Nota di contenuto: | ""Contents""; ""Introduction""; ""1. The category of sets in vector spaces""; ""2. Finiteness conditions and bases""; ""3. Locally finite root systems""; ""4. Invariant inner products and the coroot system""; ""5. Weyl groups""; ""6. Integral bases, root bases and Dynkin diagrams""; ""7. Weights and coweights""; ""8. Classification""; ""9. More on Weyl groups and automorphism groups""; ""10. Parabolic subsets and positive systems for symmetric sets in vector spaces""; ""11. Parabolic subsets of root systems and presentations of the root lattice and the Weyl group"" |
""12. Closed and full subsystems of finite and infinite classical root systems""""13. Parabolic subsets of root systems: classification""; ""14. Positive systems in root systems""; ""15. Positive linear forms and facets""; ""16. Dominant and fundamental weights""; ""17. Gradings of root systems""; ""18. Elementary relations and graphs in 3-graded root systems""; ""Appendix A. Some standard results on finite root systems""; ""Appendix B. Cones defined by totally preordered sets""; ""Bibliography""; ""Index of notations""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I"" | |
""J""""L""; ""M""; ""N""; ""O""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""W""; ""Z"" | |
Titolo autorizzato: | Locally finite root systems |
ISBN: | 1-4704-0412-5 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910788747403321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |