Vai al contenuto principale della pagina
Autore: | Attewell Paul A. <1949-> |
Titolo: | Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan |
Pubblicazione: | Oakland, California : , : University of California Press, , 2015 |
©2015 | |
Descrizione fisica: | 1 online resource (265 p.) |
Disciplina: | 006.3/12 |
Soggetto topico: | Social sciences - Data processing |
Social sciences - Statistical methods | |
Data mining | |
Soggetto non controllato: | analyzing data |
bayesian networks | |
big data | |
bootstrapping | |
business analytics | |
chaid | |
classification and regression trees | |
classification trees | |
confusion matrix | |
data analysis | |
data mining | |
data processing | |
data scholarship | |
data science | |
hardware for data mining | |
heteroscedasticity | |
naive bayes | |
partition trees | |
permutation tests | |
scholarly data | |
social science | |
social scientists | |
software for data mining | |
statistical methods | |
statistical modeling | |
studying data | |
text mining | |
vif regression | |
weka | |
Persona (resp. second.): | MonaghanDavid B. <1988-> |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Front matter -- CONTENTS -- ACKNOWLEDGMENTS -- 1. WHAT IS DATA MINING? -- 2. CONTRASTS WITH THE CONVENTIONAL STATISTICAL APPROACH -- 3. SOME GENERAL STRATEGIES USED IN DATA MINING -- 4. IMPORTANT STAGES IN A DATA MINING PROJECT -- 5. PREPARING TRAINING AND TEST DATASETS -- 6. VARIABLE SELECTION TOOLS -- 7. CREATING NEW VARIABLES -- 8. EXTRACTING VARIABLES -- 9. CLASSIFIERS -- 10. CLASSIFICATION TREES -- 11. NEURAL NETWORKS -- 12. CLUSTERING -- 13. LATENT CLASS ANALYSIS AND MIXTURE MODELS -- 14. ASSOCIATION RULES -- CONCLUSION. Where Next? -- BIBLIOGRAPHY -- NOTES -- INDEX |
Sommario/riassunto: | We live in a world of big data: the amount of information collected on human behavior each day is staggering, and exponentially greater than at any time in the past. Additionally, powerful algorithms are capable of churning through seas of data to uncover patterns. Providing a simple and accessible introduction to data mining, Paul Attewell and David B. Monaghan discuss how data mining substantially differs from conventional statistical modeling familiar to most social scientists. The authors also empower social scientists to tap into these new resources and incorporate data mining methodologies in their analytical toolkits. Data Mining for the Social Sciences demystifies the process by describing the diverse set of techniques available, discussing the strengths and weaknesses of various approaches, and giving practical demonstrations of how to carry out analyses using tools in various statistical software packages. |
Titolo autorizzato: | Data mining for the social sciences |
ISBN: | 0-520-28098-9 |
0-520-96059-9 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910788152303321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |