Vai al contenuto principale della pagina

The Black-Scholes model / / Marek Capinski, Ekkehard Kopp [[electronic resource]]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Capiński Marek <1951-> Visualizza persona
Titolo: The Black-Scholes model / / Marek Capinski, Ekkehard Kopp [[electronic resource]] Visualizza cluster
Pubblicazione: Cambridge : , : Cambridge University Press, , 2013
Descrizione fisica: 1 online resource (ix, 168 pages) : digital, PDF file(s)
Disciplina: 332.64/53
Soggetto topico: Options (Finance) - Prices - Mathematical models
Persona (resp. second.): KoppP. E. <1944->
Note generali: Title from publisher's bibliographic system (viewed on 05 Oct 2015).
Nota di contenuto: Cover; The Black-Scholes Model; Title; Copyright; Contents; Preface; 1 Introduction; 1.1 Asset dynamics; Model parameters; 1.2 Methods of option pricing; Risk-neutral probability approach; The PDE approach; 2 Strategies and risk-neutral probability; 2.1 Finding the risk-neutral probability; Removing the drift; Girsanov theorem - simple version; 2.2 Self-financing strategies; 2.3 The No Arbitrage Principle; 2.4 Admissible strategies; 2.5 Proofs; 3 Option pricing and hedging; 3.1 Martingale representation theorem; 3.2 Completeness of the model; 3.3 Derivative pricing
General derivative securitiesPut options; Call options; 3.4 The Black-Scholes PDE; From Black-Scholes PDE to option price; The replicating strategy; 3.5 The Greeks; 3.6 Risk and return; 3.7 Proofs; 4 Extensions and applications; 4.1 Options on foreign currency; Dividend paying stock; 4.2 Structural model of credit risk; 4.3 Compound options; 4.4 American call options; 4.5 Variable coefficients; 4.6 Growth optimal portfolios; 5 Path-dependent options; 5.1 Barrier options; 5.2 Distribution of the maximum; 5.3 Pricing barrier and lookback options; Hedging; Lookback option; 5.4 Asian options
Continuous geometric averageDiscrete geometric average; 6 General models; 6.1 Two assets; The market; Strategies and risk-neutral probabilities; Two stocks, one Wiener process; One stock, two Wiener processes; 6.2 Many assets; 6.3 Ito formula; 6.4 Levy's Theorem; 6.5 Girsanov Theorem; 6.6 Applications; Index
Sommario/riassunto: The Black-Scholes option pricing model is the first and by far the best-known continuous-time mathematical model used in mathematical finance. Here, it provides a sufficiently complex, yet tractable, testbed for exploring the basic methodology of option pricing. The discussion of extended markets, the careful attention paid to the requirements for admissible trading strategies, the development of pricing formulae for many widely traded instruments and the additional complications offered by multi-stock models will appeal to a wide class of instructors. Students, practitioners and researchers alike will benefit from the book's rigorous, but unfussy, approach to technical issues. It highlights potential pitfalls, gives clear motivation for results and techniques and includes carefully chosen examples and exercises, all of which make it suitable for self-study.
Titolo autorizzato: The Black-Scholes model  Visualizza cluster
ISBN: 1-316-08924-X
1-139-57933-9
1-283-63763-4
1-139-56984-8
1-107-25412-4
1-139-57250-4
1-139-02613-5
1-139-56894-9
1-139-57075-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910785989103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilitĂ  qui
Serie: Mastering mathematical finance.