Vai al contenuto principale della pagina

Equivariant degree theory [[electronic resource] /] / Jorge Ize, Alfonso Vignoli



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Ize Jorge <1946-> Visualizza persona
Titolo: Equivariant degree theory [[electronic resource] /] / Jorge Ize, Alfonso Vignoli Visualizza cluster
Pubblicazione: Berlin ; ; New York, : Walter de Gruyter, 2003
Edizione: Reprint 2012
Descrizione fisica: 1 online resource (384 p.)
Disciplina: 514/.2
Soggetto topico: Topological degree
Homotopy groups
Classificazione: SK 300
Altri autori: VignoliAlfonso <1940->  
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references (p. [337]-358) and index.
Nota di contenuto: Front matter -- Preface -- Contents -- Introduction -- Chapter 1. Preliminaries -- Chapter 2. Equivariant Degree -- Chapter 3. Equivariant Homotopy Groups of Spheres -- Chapter 4. Equivariant Degree and Applications -- Appendix A. Equivariant Matrices -- Appendix Î’. Periodic Solutions of Linear Systems -- Bibliography -- Index
Sommario/riassunto: This book presents a new degree theory for maps which commute with a group of symmetries. This degree is no longer a single integer but an element of the group of equivariant homotopy classes of maps between two spheres and depends on the orbit types of the spaces. The authors develop completely the theory and applications of this degree in a self-contained presentation starting with only elementary facts. The first chapter explains the basic tools of representation theory, homotopy theory and differential equations needed in the text. Then the degree is defined and its main abstract properties.
Titolo autorizzato: Equivariant degree theory  Visualizza cluster
ISBN: 1-282-19503-4
9786612195037
3-11-916004-0
3-11-020002-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910782194003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilitĂ  qui
Serie: Gruyter series in nonlinear analysis and applications ; ; 8.