Vai al contenuto principale della pagina
Autore: | Bruggeman Roelof W |
Titolo: | Representations of SU(2,1) in Fourier Term Modules / / by Roelof W. Bruggeman, Roberto J. Miatello |
Pubblicazione: | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Edizione: | 1st ed. 2023. |
Descrizione fisica: | 1 online resource (217 pages) |
Disciplina: | 515.2433 |
Soggetto topico: | Number theory |
Fourier analysis | |
Topological groups | |
Lie groups | |
Number Theory | |
Fourier Analysis | |
Topological Groups and Lie Groups | |
Teoria de nombres | |
Anàlisi de Fourier | |
Soggetto genere / forma: | Llibres electrònics |
Altri autori: | MiatelloRoberto J |
Sommario/riassunto: | This book studies the modules arising in Fourier expansions of automorphic forms, namely Fourier term modules on SU(2,1), the smallest rank one Lie group with a non-abelian unipotent subgroup. It considers the “abelian” Fourier term modules connected to characters of the maximal unipotent subgroups of SU(2,1), and also the “non-abelian” modules, described via theta functions. A complete description of the submodule structure of all Fourier term modules is given, with a discussion of the consequences for Fourier expansions of automorphic forms, automorphic forms with exponential growth included. These results can be applied to prove a completeness result for Poincaré series in spaces of square integrable automorphic forms. Aimed at researchers and graduate students interested in automorphic forms, harmonic analysis on Lie groups, and number-theoretic topics related to Poincaré series, the book will also serve as a basic reference on spectral expansion with Fourier-Jacobi coefficients. Only a background in Lie groups and their representations is assumed. |
Titolo autorizzato: | Representations of SU(2,1) in Fourier Term Modules |
ISBN: | 3-031-43192-8 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910760295503321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |