Vai al contenuto principale della pagina

Ladder polymers : synthesis, properties, applications, and perspectives / / edited by Yan Xia, Masahiko Yamaguchi, and Tien-Yau Luh



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Ladder polymers : synthesis, properties, applications, and perspectives / / edited by Yan Xia, Masahiko Yamaguchi, and Tien-Yau Luh Visualizza cluster
Pubblicazione: Weinheim, Germany : , : Wiley-VCH, , [2023]
©2023
Descrizione fisica: 1 online resource (421 pages)
Disciplina: 668.9
Soggetto topico: Polymers
Persona (resp. second.): XiaYan
YamaguchiMasahiko
LuhTien-Yau
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Perspective -- References -- Chapter 2 Conjugated, Aromatic Ladder Polymers: From Precision Synthesis to Single Chain Spectroscopy and Strong Light‐Matter Coupling -- 2.1 Introduction -- 2.2 Methylene‐Bridged Phenylene Ladder Polymers - Ladder‐Type Poly(para‐Phenylene)s - and Related Ladder Polymers -- 2.3 Vinylene‐Bridged Phenylene Ladder Polymers (Polypentaphene Ladder Polymers) -- 2.4 Conjugated Hydrocarbon Ladder Polymers with a Polyacene Skeleton -- 2.5 Ethylene‐Bridged Phenylene Ladder Polymers -- 2.6 Optoelectronic Applications of Aromatic Ladder Polymers -- 2.6.1 High‐Resolution Spectroscopy of LPPP -- 2.6.2 LPPP as a Single‐Photon Source -- 2.7 Interaction of Light and Matter in the Strong‐Coupling Regime -- 2.8 A Primer on Exciton Polaritons in Microcavities -- 2.9 Exciton‐Polariton Condensation in Planar Microcavities -- 2.10 Example of an All‐Optical Logic Based on Polariton Condensates -- 2.11 Controlled Spatial Confinement of Exciton Polaritons: A Solid‐State Platform for Room‐Temperature Quantum Simulators -- 2.12 Summary and Outlook -- Acknowledgment -- References -- Chapter 3 Graphene Nanoribbons as Ladder Polymers - Synthetic Challenges and Components of Future Electronics -- 3.1 Introduction -- 3.2 Solution‐Based Synthesis -- 3.3 On‐Surface Synthesis of GNRs -- 3.4 Nonplanarity and Chirality -- 3.5 Spin Bearing GNRs and Magnetic Properties -- 3.6 Device Integration -- 3.7 Conclusion and Outlook -- Acknowledgment -- References -- Chapter 4 Processing of Conjugated Ladder Polymers -- 4.1 Introduction -- 4.2 Solution‐Processing from Acidic Media -- 4.2.1 Protic Acid -- 4.2.2 Lewis Acid -- 4.3 Structural Design for Solution Processability -- 4.3.1 End Group Modification -- 4.3.2 Side‐Chain Modification -- 4.3.3 Nonplanar Backbone.
4.4 Processing from Solution‐Dispersed Nanoparticles -- 4.5 In Situ Reaction -- 4.6 Conclusion and Outlook -- References -- Chapter 5 Multiporphyrin Arrays: From Biomimetics to Functional Materials -- 5.1 Introduction -- 5.2 Structure Variations and Synthetic Strategies -- 5.2.1 Multiporphyrin Arrays Having Linear and Ladder Shapes -- 5.2.2 Multiporphyrin Arrays Having Ring and Tube Shapes -- 5.2.3 Multiporphyrin Arrays Having Spherical Shapes -- 5.2.4 Multiporphyrin Arrays Having Two‐Dimensional Sheet‐Like Shapes -- 5.2.5 Multiporphyrin Array‐Constructed Cages -- 5.2.6 Multiporphyrin Array‐Based Rotaxanes -- 5.3 Functions and Applications -- 5.3.1 As Models for Studying Photochemical Processes in Natural Photosynthesis -- 5.3.2 As Components for Host-Guest Chemistry and Supramolecular Assemblies -- 5.3.3 As Porous Materials for Chemical Adsorption and Separation -- 5.3.4 As Catalysts for Diverse Chemical Reactions -- 5.4 Conclusions -- References -- Chapter 6 Ladder Polymers of Intrinsic Microporosity (PIMs) -- 6.1 Introduction -- 6.1.1 Porosity of PIMs -- 6.1.2 Thermal Stability of PIMs -- 6.2 Types of Ladder PIMs -- 6.2.1 PIM‐1 -- 6.2.2 PIM‐1 Modification and Other Polybenzodioxane‐Based Ladder PIMs -- 6.2.3 Modification of PIM‐1 and Use of Different Fluorinated Monomers -- 6.2.4 Ladder Co‐polymers and Other Modifications -- 6.3 Tröger's Base PIMs (TB‐PIMs) -- 6.3.1 New Tröger's Base Ladder PIMs (TB‐PIMs) -- 6.3.2 Tröger's Base (TB) Ladder Modifications: Quaternization and Ring Opening -- 6.4 Applications of PIMs -- 6.4.1 Gas Separation -- 6.4.2 Gas Storage -- 6.4.3 Catalysis and Electrochemistry Applications -- 6.4.4 PIMs for Pervaporation and Nanofiltration -- 6.4.5 Anion and Cation Exchange and Energy Applications -- 6.5 Conclusions -- References.
Chapter 7 Catalytic Arene-Norbornene Annulation (CANAL) Polymerization for the Synthesis of Rigid Ladder Polymers -- 7.1 Introduction -- 7.2 Inspiration of CANAL Polymerization from the Catellani Reaction -- 7.3 CANAL Polymerization for the Synthesis of Rigid Kinked Ladder Polymers -- 7.4 Conclusion and Outlook -- References -- Chapter 8 Simultaneous Growth in Two Dimensions: A Key to Synthetic 2D Polymers -- 8.1 Introduction -- 8.2 Strategic Considerations and Some Results -- 8.3 On the Polymerization Mechanism -- 8.4 Summary -- Acknowledgments -- References -- Chapter 9 Ladderphanes and Related Ladder Polymers -- 9.1 Introduction -- 9.2 Polynorbornene‐Based Symmetric Ladderphanes -- 9.2.1 General -- 9.2.2 Ferrocene Linkers -- 9.2.3 Planar Aromatic Linkers -- 9.2.4 Macrocyclic Metal Complexes -- 9.2.5 Three‐Dimensional Organic Linkers -- 9.3 Symmetric Ladderphanes with All Z Double Bonds on the Polymeric Backbones -- 9.4 Polyacetylene‐Based Ladderphanes -- 9.4.1 General -- 9.4.2 Synthesis of PA‐Based Ladderphanes -- 9.4.3 Charged Species in Ladderphanes and Block Ladderphanes -- 9.4.4 Topochemical Methods for Symmetric Ladderphanes -- 9.5 Unsymmetric Ladderphanes by Template Synthesis -- 9.5.1 General -- 9.5.2 Polynorbornene‐Based Unsymmetric Ladderphanes by Replication Protocol -- 9.6 Sequential Polymerization of a Monomer Having Two Different Polymerizable Groups -- 9.6.1 General -- 9.6.2 Polycyclobutene‐Based Unsymmetric Ladderphanes -- 9.7 Chemical Reactions of Ladderphanes -- 9.7.1 Reactions with Double Bonds on Ladderphanes -- 9.7.2 Reactions at the End Groups -- 9.7.3 Arrays of Ladderphanes -- 9.7.4 Cyclic Ladderphanes -- 9.8 Physical Properties -- 9.8.1 General -- 9.8.2 Excimer Formation and Aggregation Enhanced Excimer Emission -- 9.8.3 Dielectric Properties -- 9.9 Conclusion -- References -- Chapter 10 Ladder Polysiloxanes.
10.1 Introduction -- 10.2 Preparation of LPSs -- 10.2.1 Hydrolysis-Condensation Procedures -- 10.2.2 Supramolecular Architecture‐Directed Confined Polymerization -- 10.3 Applications of LPSQs -- 10.3.1 Applications for Manufacturing Electrical Devices -- 10.3.2 Coatings -- 10.3.3 LED Encapsulants -- 10.3.4 Electrochromic and Electrofluorochromic Bifunctional Materials -- 10.3.5 Self‐Healing Polymeric Materials -- 10.3.6 Composite Materials -- 10.3.7 Fabrication of Hybrid LPSQ‐Grafted Multiwalled Carbon Nanotubes (MWNTs) -- 10.3.8 The Fabrication of Supermolecular Structures -- 10.4 Perspectives -- References -- Chapter 11 DNA as a Ladder Polymer, from the Basics to Structured Nanomaterials -- 11.1 Basics -- 11.1.1 Synthesis -- 11.1.2 Stacking Interactions -- 11.1.3 Sugar Packering -- 11.1.4 Conformations of Nucleobase -- 11.1.5 Hybridization and Dissociation -- 11.2 Noncannonical DNA Structures -- 11.2.1 Triple‐Stranded DNA -- 11.2.2 G‐Quadruplex DNA -- 11.2.3 Cytosine‐Rich Four Stranded DNA -- 11.2.4 Branched DNA -- 11.3 DNA Nano Assembly -- 11.3.1 DNA Rod‐Like 1D Wire -- 11.3.2 DNA Nanomaterial (DNA Origami) -- 11.4 Selected Examples of Biotechnology -- 11.4.1 Triple Helix DNA Formation with the Sequences for which the Natural Nucleotides Do Not Recognize -- 11.4.2 W‐shaped Nucleoside Analogs (WNAs) for TA and CG Inversion Sites -- 11.4.3 Pseudo‐dC Derivatives (MeAP‐ΨdC) for a CG Inversion Site -- 11.4.4 Base‐ and Sequence Selective RNA Modification by the Functionality Transfer Oligonucleotides -- 11.5 Conclusion -- References -- Chapter 12 Twisted Ladder Polymers: Dynamic Properties of Cylindrical Double‐Helix Oligomers with Axial Hydrophobic and Hydrophilic Groups -- 12.1 Ladder and Double‐Helix Polymers/Oligomers -- 12.2 Double‐Helix Oligomers with Long Alkyl Groups at the Axial Positions.
12.2.1 Anisotropic Films Formed from Liquid Crystal Gels (LCGs) -- 12.2.2 Polymorphism Involving Lyotropic Liquid Crystal Gels -- 12.2.3 Concentric Giant Vesicle Formation -- 12.3 Synthesis and Properties of Long Polymethylene Compounds -- 12.4 Double‐Helix Oligomer Formed from Pendant Oligomer -- 12.5 Hydrophilic Double‐Helix Oligomers with Axial TEG Groups in Aqueous Solvents -- 12.5.1 Properties of Liquid Water -- 12.5.2 Inverse Thermoresponse of Homo‐Double‐Helix Oligomer in Aqueous Solvents -- 12.5.3 Inverse Thermoresponses in Different Aqueous Solvents -- 12.5.4 Jumps in Thermoresponse to a Small Change in Water Content -- 12.6 Conclusions -- Acknowledgments -- References -- Chapter 13 Coordination Ladder Polymers: Helical Metal Strings -- 13.1 Introduction -- 13.2 Metal Strings with Oligopyridylamido and the Pyrazine‐Modulated Ligands -- 13.2.1 Nickel Metal‐String Complexes -- 13.2.2 Cobalt Metal‐String Complexes -- 13.2.3 Chromium Metal‐String Complexes -- 13.2.4 Ruthenium, Rhodium, and Iron Metal‐String Complexes -- 13.3 The New Generation of Metal‐String Complexes -- 13.4 Metal‐String Complexes as the Building Blocks in Coordination Polymers -- 13.5 Heteronuclear Metal‐String Complexes -- 13.5.1 Synthetic Strategies for HMSCs -- 13.5.2 MAMBMA HMSCs -- 13.5.3 MAMAMB HMSCs -- 13.5.4 MAMBMC HMSCs -- 13.5.5 Other HMSCs with More than Three Metal Atoms -- 13.6 Stereoisomers of Metal‐String Complexes -- 13.7 The Conductance of Metal‐String Complexes -- 13.8 Outlook -- References -- Epilogue -- Index -- EULA.
Titolo autorizzato: Ladder polymers  Visualizza cluster
ISBN: 3-527-83330-7
3-527-83328-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910684599103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui