Vai al contenuto principale della pagina

Deep Learning-Based Machinery Fault Diagnostics



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Chen Hongtian Visualizza persona
Titolo: Deep Learning-Based Machinery Fault Diagnostics Visualizza cluster
Pubblicazione: MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica: 1 online resource (290 p.)
Soggetto topico: History of engineering & technology
Technology: general issues
Soggetto non controllato: abnormal case removal
alumina concentration
aluminum reduction process
anti-noise
attention mechanism
autonomous underwater vehicle
auxiliary model
Bayesian network
bearing fault detection
belief rule base
canonical correlation analysis
canonical variate analysis
case-based reasoning
convolution fusion
convolutional neural network
data augmentation
data-driven
deep residual network
distributed predictive control
disturbance detection
dynamic autoregressive latent variables model
dynamics
event-triggered control
evidential reasoning
evidential reasoning rule
fault detection
fault diagnosis
fault tolerant control
filter
flywheel fault diagnosis
fractional-order calculus theory
fuzzy fault tree analysis
gated recurrent unit
gearbox fault diagnosis
hammerstein output-error systems
high-speed trains
information transformation
intelligent fault diagnosis
interval type-2 Takagi-Sugeno fuzzy model
just-in-time learning
k-nearest neighbor analysis
local outlier factor
LSSVM
multi-innovation identification theory
n/a
nonlinear networked systems
ocean currents
operational optimization
parameter optimization
power transmission system
process monitoring
PSO
robust optimization
sintering process
spatiotemporal feature fusion
stacked pruning sparse denoising autoencoder
state identification
statistical local analysis
subspace identification
system modelling
thruster fault diagnostics
variable time lag
wavelet mutation
Persona (resp. second.): ZhongKai
RanGuangtao
ChengChao
ChenHongtian
Sommario/riassunto: This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis.
Titolo autorizzato: Deep Learning-Based Machinery Fault Diagnostics  Visualizza cluster
ISBN: 3-0365-5174-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910619469103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui