Vai al contenuto principale della pagina

Genomic designing for biotic stress resistant technical crops / / edited by Chittaranjan Kole



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Genomic designing for biotic stress resistant technical crops / / edited by Chittaranjan Kole Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2022]
©2022
Descrizione fisica: 1 online resource (635 pages)
Disciplina: 344.73046
Soggetto topico: Agricultural pests
Crops - Effect of stress on
Persona (resp. second.): KoleChittaranjan
Nota di contenuto: Intro -- Preface -- Contents -- Contributors -- Abbreviations -- 1 Genomic Designing for Biotic Stress Resistant Cassava -- 1.1 Biotic Stress in Cassava -- 1.1.1 Prevalent Cassava Biotic Factors -- 1.1.2 Regional Incidence of Cassava Pests and Diseases -- 1.1.3 Economic Impact of Biotic Stress on Cassava Production and Utilization -- 1.2 Biotic Factors Affecting Cassava Production -- 1.2.1 Diseases -- 1.2.2 Pests -- 1.3 Approaches for Developing Biotic Stress Resistant Cassava Varieties -- 1.3.1 Conventional Breeding Approach for Developing Biotic Stress Resistant Cassava Varieties -- 1.3.2 Molecular Techniques for Biotic Stress Improvement in Cassava -- 1.3.3 The Adoption of Genetic Engineering in Genomic Designing for Biotic Stress Resistant Cassava -- 1.3.4 Genome Editing in Genomic Designing for Biotic Stress Resistant Cassava -- 1.4 Future Perspectives in the Genomic Designing for Biotic Stress Resistant Cassava -- References -- 2 Genomic Designing for Biotic Stress Resistant Cocoa Tree -- 2.1 Introduction -- 2.2 Description on Different Biotic Stresses -- 2.2.1 Frosty Pod Rot of Cocoa -- 2.2.2 Witches' Broom Disease -- 2.2.3 Black Pod Rot -- 2.2.4 Ceratocystis Wilt of Cacao -- 2.2.5 Cocoa Swollen Shoot Virus -- 2.2.6 Other Diseases and Pests -- 2.3 Genetic Resources of Resistance Genes -- 2.4 Glimpses on Classical Genetics and Traditional Breeding -- 2.4.1 Breeding Objectives -- 2.4.2 Classical Mapping Efforts -- 2.4.3 Classical Breeding Achievements -- 2.4.4 Limitations of Traditional Breeding and Rationale for Molecular Breeding -- 2.5 Brief on Diversity Analysis of Cocoa Germplasm -- 2.5.1 Phenotype-Based Diversity Analysis -- 2.5.2 Genotype-Based Diversity Analysis -- 2.6 Brief Account of Molecular Mapping of Resistance Genes and QTLs -- 2.6.1 Genetic Maps of Cocoa, Marker Evolution and Segregating Populations.
2.6.2 QTL Regions Disease Resistance in Cocoa -- 2.7 Cocoa Germplasm Characterization -- 2.8 Map-Based Cloning of Resistance Genes -- 2.8.1 BAC Libraries -- 2.8.2 Cytogenetic Studies -- 2.9 Genomics-Aided Breeding for Resistance Traits -- 2.9.1 Large Scale Transcriptomic Resources -- 2.9.2 Genome Sequencing -- 2.9.3 Proteomics Resources -- 2.9.4 Bases for Marker Assisted Selection -- 2.10 Brief on Genetic Engineering for Resistance Traits and Recent Concepts and Strategies Developed -- 2.10.1 Review on Achievements of Transgenics -- 2.10.2 Genome Editing -- 2.10.3 Nanotechnology -- 2.11 Brief Account on Tole of Bioinformatics as a Tool -- 2.11.1 Gene and Genome Databases -- 2.11.2 Comparative Genome Databases -- 2.11.3 Gene Expression Databases -- 2.11.4 Protein Databases -- 2.11.5 Integration of Different Data -- References -- 3 Genomic Designing for Biotic Stress Resistance in Coconut -- 3.1 Introduction -- 3.2 Diseases of Coconut -- 3.2.1 Leaf Rot -- 3.2.2 Bud Rot -- 3.2.3 Stem Bleeding -- 3.2.4 Ganoderma Wilt/Basal Stem Rot -- 3.2.5 Immature Nut Fall -- 3.2.6 Grey Leaf Spot -- 3.2.7 Lasiodiplodia Leaf Blight of Coconut -- 3.2.8 Phytoplasmal Diseases of Coconut -- 3.2.9 Diseases Caused by Viruses and Viroids -- 3.3 Pests of Coconut -- 3.4 Genetic Resources of Resistance/Tolerance Genes -- 3.5 Classical Genetics and Traditional Breeding -- 3.6 Association Mapping Studies -- 3.7 Molecular Mapping of Resistance Genes and QTLs and Marker-Assisted Breeding -- 3.8 Genomics-Aided Breeding for Resistance Traits -- 3.8.1 Whole-Genome Sequence Assemblies -- 3.8.2 Transcriptomic Approaches -- 3.9 Conclusion and Future Perspectives -- References -- 4 Current Challenges and Genomic Advances Toward the Development of Coffee Genotypes Resistant to Biotic Stress -- 4.1 Introduction -- 4.2 Genomic Analyses for Major Biotic Stresses in Coffee.
4.3 Transcriptome Studies for Major Biotic Stresses in Coffee -- 4.4 Genetic Transformation, RNAi, and Genome Editing for Biotic Stress in Coffee -- 4.5 Breeding for Biotic Stress Resistance in Coffee: Some Case Studies -- 4.5.1 Coffee Leaf Rust (CLR) -- 4.5.2 Coffee Berry Disease (CBD) -- 4.5.3 Bacterial Halo Blight (BHB) -- 4.5.4 Nematodes -- 4.5.5 Coffee Leaf Miner (CLM) -- 4.5.6 Coffee Berry Borer (CBB) -- 4.6 Final Remarks -- References -- 5 Disease Resistance in Cotton -- 5.1 Introduction -- 5.2 Bacterial Blight -- 5.2.1 Causal Agent and Significance -- 5.2.2 Resistant Germplasm -- 5.2.3 Genetics of Resistance -- 5.2.4 Resistance Breeding -- 5.2.5 Molecular Mapping of BB Resistance Genes -- 5.2.6 Marker-Assisted Selection (MAS) -- 5.3 Verticillium Wilt -- 5.3.1 Causal Agent and Significance -- 5.3.2 Screening Techniques and Resistance Sources -- 5.3.3 Resistance Breeding -- 5.3.4 Genetics of Resistance -- 5.3.5 Mapping of Verticillium Wilt Resistance QTLs -- 5.3.6 Marker-Assisted Selection for VW Resistance -- 5.4 Fusarium Wilt -- 5.4.1 Causal Agent and Significance -- 5.4.2 Sources of Resistance -- 5.4.3 Resistance Breeding -- 5.4.4 Genetics of Resistance -- 5.4.5 Molecular Mapping of FW Resistance Quantitative Trait Loci -- 5.4.6 Molecular Breeding Techniques -- 5.5 Future Prospects -- References -- 6 Conventional and Molecular Interventions for Biotic Stress Resistance in Floricultural Crops -- 6.1 Introduction -- 6.2 Biotic Stress in Floriculture Crops -- 6.3 Different Approaches to Alleviate Biotic Stress in Ornamentals -- 6.3.1 Conventional Breeding -- 6.3.2 Molecular Approaches -- 6.4 Conclusion -- References -- 7 Genomics for Biotic Stress Tolerance in Jute -- 7.1 Introduction -- 7.1.1 Economic Importance -- 7.1.2 Reduction in Yield and Quality Due to Biotic Stresses -- 7.1.3 Growing Importance in the Face of Climate Change.
7.1.4 Limitations of Traditional Breeding and Rationale of Genome Designing -- 7.2 Description on Different Biotic Stresses -- 7.2.1 Major Insect-Pests of Jute and Their Management -- 7.2.2 Diseases of Jute -- 7.3 Traditional Breeding Methods -- 7.3.1 Intraspecific Hybridization -- 7.3.2 Interspecific Hybridization -- 7.3.3 Limitations of Classical Genetics and Breeding in Developing Resistant Cultivars -- 7.4 Genetic Resources of Resistance Genes -- 7.5 Resistance Gene-Based Marker Development and Utilization -- 7.5.1 Utilization of Resistance Gene-Based Genic Markers for Domestication and Population Genetic Analyses in Jute -- 7.5.2 Use in Phylogenetic Analysis -- 7.5.3 Use of RGA in Population Structure Analysis -- 7.6 Genomics-Aided Breeding for Resistance Traits -- 7.6.1 Genomics to Decipher Plant-Pathogen Interaction Pathways in Jute -- 7.6.2 Genomics for Identifying Genes Involved in Resistance to Stem Rot Disease -- 7.6.3 Genomics for Deciphering Systemic Acquired Resistance -- 7.6.4 Deciphering Role of Chitinase in Resistance -- 7.7 Brief Account of Molecular Mapping of Resistance Genes and QTLs -- 7.8 Brief on Genetic Engineering for Resistance Traits -- 7.9 Future Perspectives -- References -- 8 Genomic Designing for Biotic Stress Resistance in Mulberry -- 8.1 Introduction -- 8.1.1 Economic Significance -- 8.1.2 Effect of Biotic Stress on Yield and Quality -- 8.1.3 Increasing Population and Climate Change Scenario -- 8.1.4 Logical of Genome Designing and Bottlenecks of Traditional Breeding -- 8.2 Description of Different Pathogens Causing Biotic Stress in Mulberry -- 8.2.1 Major Diseases in Mulberry -- 8.2.2 Major Insect and Pests in Mulberry -- 8.3 Germplasm Resources for Disease Resistance -- 8.3.1 Primary Gene Pool -- 8.3.2 Secondary Gene Pool -- 8.3.3 Tertiary Gene Pool -- 8.3.4 Artificially Induced/Incorporated Traits/Genes.
8.4 Overview on Classical Genetics and Traditional Breeding -- 8.4.1 Traditional Breeding Methods -- 8.4.2 Breeding Objectives: Positive and Negative Selection -- 8.4.3 Achievements of Conventional Breeding (Quality, Stress Resistance, Yield etc.) -- 8.4.4 Constrains of Conventional Breeding and Basis for Molecular Breeding -- 8.4.5 Classical Mapping Efforts and Its Limitations and Utility of Molecular Mapping If Any -- 8.4.6 Use of Morphological Markers -- 8.4.7 Limitations and Prospect of Genomic Designing -- 8.5 Diversity Analysis in Brief -- 8.5.1 Diversity Analysis Based on Phenotype -- 8.5.2 Diversity Analysis Based on Genotype, Molecular Markers Applied -- 8.5.3 Relationship with Other Cultivated Species and Wild Relatives -- 8.5.4 Association with Geographical Distribution -- 8.5.5 Scope of Genetic Diversity -- 8.6 Association Mapping Studies -- 8.6.1 Genome Wide LD Studies -- 8.6.2 Future Potential for the Application of Association Studies for Germplasm Enhancement -- 8.7 Map-Based Cloning of Resistance/Tolerance Genes -- 8.7.1 Traits and Genes -- 8.8 Genomics-Assisted Breeding for Resistance/Tolerance Traits -- 8.8.1 Functional and Structural Genomic Resources Developed -- 8.8.2 Genome Sequencing, Assembly and Annotation -- 8.8.3 Impact on Gene Discovery and Germplasm Characterization -- 8.9 Recent Concepts and Strategies Developed -- 8.9.1 Gene Editing -- 8.10 Brief on Genetic Engineering for Resistance/Tolerance Traits -- 8.10.1 Target Traits and Alien Genes -- 8.11 Future Perspectives -- References -- 9 Genomic Designing for Biotic Stress Resistance in Sugarcane -- 9.1 Introduction -- 9.1.1 Economic Importance of Sugarcane -- 9.1.2 Reduction in Yield and Quality Due to Biotic Stresses -- 9.1.3 Growing Importance in the Face of Climate Change and Increasing Population.
9.1.4 Limitations of Traditional Breeding and Rational of Genome Designing.
Titolo autorizzato: Genomic designing for biotic stress resistant technical crops  Visualizza cluster
ISBN: 9783031092930
9783031092923
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910619276303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui