Vai al contenuto principale della pagina

Notes on Real Analysis and Measure Theory : Fine Properties of Real Sets and Functions / / by Alexander Kharazishvili



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kharazishvili Alexander Visualizza persona
Titolo: Notes on Real Analysis and Measure Theory : Fine Properties of Real Sets and Functions / / by Alexander Kharazishvili Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Edizione: 1st ed. 2022.
Descrizione fisica: 1 online resource (256 pages)
Disciplina: 515.8
515.42
Soggetto topico: Mathematics
Funcions de variables reals
Teoria de la mesura
Soggetto genere / forma: Llibres electrònics
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Preface -- 1. Real-Valued Semicontinuous Functions -- 2. The Oscillations of Real-Valued Functions -- 3. Monotone and Continuous Restrictions of Real-Valued Functions -- 4. Bijective Continuous Images of Absolute Null Sets -- 5. Projective Absolutely Nonmeasurable Functions -- 6. Borel Isomorphisms of Analytic Sets -- 7. Iterated Integrals of Real-Valued Functions of Two Real Variables -- 8. The Steinhaus Property, Ergocidity, and Density Points -- 9. Measurability Properties of H-Selectors and Partial H-Selectors -- 10. A Decomposition of an Uncountable Solvable Group into Three Negligible Sets -- 11. Negligible Sets Versus Absolutely Nonmeasurable Sets -- 12. Measurability Properties of Mazurkiewicz Sets -- 13. Extensions of Invariant Measures on R -- A. A Characterization of Uncountable Sets in Terms of their Self-Mappings -- B. Some Applications of Peano Type Functions -- C. Almost Rigid Mathematical Structures -- D. Some Unsolved Problems in Measure Theory -- Bibliography -- Index.
Sommario/riassunto: This monograph gives the reader an up-to-date account of the fine properties of real-valued functions and measures. The unifying theme of the book is the notion of nonmeasurability, from which one gets a full understanding of the structure of the subsets of the real line and the maps between them. The material covered in this book will be of interest to a wide audience of mathematicians, particularly to those working in the realm of real analysis, general topology, and probability theory. Set theorists interested in the foundations of real analysis will find a detailed discussion about the relationship between certain properties of the real numbers and the ZFC axioms, Martin's axiom, and the continuum hypothesis.
Titolo autorizzato: Notes on Real Analysis and Measure Theory  Visualizza cluster
ISBN: 3-031-17033-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910595030303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Springer Monographs in Mathematics, . 2196-9922