Vai al contenuto principale della pagina

Generative Adversarial Networks for Image Generation / / by Xudong Mao, Qing Li



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Mao Xudong Visualizza persona
Titolo: Generative Adversarial Networks for Image Generation / / by Xudong Mao, Qing Li Visualizza cluster
Pubblicazione: Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Edizione: 1st ed. 2021.
Descrizione fisica: 1 online resource (86 pages) : illustrations
Disciplina: 006.32
Soggetto topico: Machine learning
Computer vision
Application software
Machine Learning
Computer Vision
Computer and Information Systems Applications
Persona (resp. second.): LiQing
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Generative Adversarial Networks (GANs) -- GANs for Image Generation -- More Key Applications of GANs -- Conclusions.
Sommario/riassunto: Generative adversarial networks (GANs) were introduced by Ian Goodfellow and his co-authors including Yoshua Bengio in 2014, and were to referred by Yann Lecun (Facebook’s AI research director) as “the most interesting idea in the last 10 years in ML.” GANs’ potential is huge, because they can learn to mimic any distribution of data, which means they can be taught to create worlds similar to our own in any domain: images, music, speech, prose. They are robot artists in a sense, and their output is remarkable – poignant even. In 2018, Christie’s sold a portrait that had been generated by a GAN for $432,000. Although image generation has been challenging, GAN image generation has proved to be very successful and impressive. However, there are two remaining challenges for GAN image generation: the quality of the generated image and the training stability. This book first provides an overview of GANs, and then discusses the task of image generation and the details of GAN image generation. It also investigates a number of approaches to address the two remaining challenges for GAN image generation. Additionally, it explores three promising applications of GANs, including image-to-image translation, unsupervised domain adaptation and GANs for security. This book appeals to students and researchers who are interested in GANs, image generation and general machine learning and computer vision. .
Titolo autorizzato: Generative adversarial networks for image generation  Visualizza cluster
ISBN: 9789813360488
9813360488
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910483673803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui