Vai al contenuto principale della pagina
Autore: | Bourdon Paul |
Titolo: | Cyclic phenomena for composition operators / / Paul S. Bourdon, Joel H. Shapiro |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , 1997 |
©1997 | |
Descrizione fisica: | 1 online resource (122 p.) |
Disciplina: | 515/.7246 |
Soggetto topico: | Composition operators |
Soggetto genere / forma: | Electronic books. |
Persona (resp. second.): | ShapiroJoel H. |
Note generali: | "January 1997, Volume 125, Number 596 (second of 5 numbers)." |
Nota di bibliografia: | Includes bibliographical references. |
Nota di contenuto: | ""Contents""; ""Introduction""; ""Cyclicity""; ""Cyclicity and Iteration""; """"Linear-Fractional"" Classification of Arbitrary Maps""; ""Transference""; ""The Intertwining Map Ï?""; ""1 Preliminaries""; ""The Space H[sup(2)]""; ""Angular Derivatives""; ""Cyclicity and Univalence""; ""Hypercyclicity Basics""; ""2 Linear-Fractional Composition Operators""; ""Linear-Fractional Basics""; ""Cyclicity: First Observations""; ""The Main Theorem""; ""Remarks on ""Extreme Behavior""""; ""3 Linear-Fractional Models""; ""First Applications of Transference""; ""Cyclicity and Fixed-Point Position"" |
""4 The Hyperbolic and Parabolic Models""""Expansions About the Denjoy-Wolff Point""; ""Consequences for Parabolic Type""; ""The Hyperbolic Case""; ""The Parabolic Case""; ""Consequences of The Parabolic Models Theorem""; ""Motivation for the Proof""; ""Estimates on Orbit Magnitudes""; ""Proof of the Parabolic Models Theorem""; ""5 Cyclicity: Parabolic Nonautomorphism Case""; ""Applying the Parabolic Model""; ""A Cyclic Vector for C[sub(α)]""; ""6 Endnotes""; ""Orbit Separation and Parabolic Subtype""; ""Less Differentiability""; ""Further Directions""; ""Acknowledgment""; ""References"" | |
Titolo autorizzato: | Cyclic phenomena for composition operators |
ISBN: | 1-4704-0181-9 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910480468703321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |