Vai al contenuto principale della pagina

Advanced Linear Modeling : Statistical Learning and Dependent Data / / by Ronald Christensen



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Christensen Ronald Visualizza persona
Titolo: Advanced Linear Modeling : Statistical Learning and Dependent Data / / by Ronald Christensen Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Edizione: 3rd ed. 2019.
Descrizione fisica: 1 online resource (618 pages) : illustrations
Disciplina: 519.5
Soggetto topico: Probabilities
Mathematics - Data processing
Statistics
Probability Theory
Computational Mathematics and Numerical Analysis
Statistical Theory and Methods
Note generali: Includes index.
Nota di contenuto: 1. Nonparametric Regression -- 2. Penalized Estimation -- 3. Reproducing Kernel Hilbert Spaces -- 4. Covariance Parameter Estimation -- 5. Mixed Models and Variance Components -- 6. Frequency Analysis of Time Series -- 7. Time Domain Analysis -- 8. Linear Models for Spacial Data: Kriging -- 9. Multivariate Linear Models: General. 10. Multivariate Linear Models: Applications -- 11. Generalized Multivariate Linear Models and Longitudinal Data -- 12. Discrimination and Allocation -- 13. Binary Discrimination and Regression -- 14. Principal Components, Classical Multidimensional Scaling, and Factor Analysis -- A Mathematical Background -- B Best Linear Predictors -- C Residual Maximum Likelihood -- Index -- Author Index.
Sommario/riassunto: Now in its third edition, this companion volume to Ronald Christensen’s Plane Answers to Complex Questions uses three fundamental concepts from standard linear model theory—best linear prediction, projections, and Mahalanobis distance— to extend standard linear modeling into the realms of Statistical Learning and Dependent Data. This new edition features a wealth of new and revised content. In Statistical Learning it delves into nonparametric regression, penalized estimation (regularization), reproducing kernel Hilbert spaces, the kernel trick, and support vector machines. For Dependent Data it uses linear model theory to examine general linear models, linear mixed models, time series, spatial data, (generalized) multivariate linear models, discrimination, and dimension reduction. While numerous references to Plane Answers are made throughout the volume, Advanced Linear Modeling can be used on its own given a solid background in linear models. Accompanying R code for the analyses is available online.
Titolo autorizzato: Advanced linear modeling  Visualizza cluster
ISBN: 9783030291648
3030291642
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910364955903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Springer Texts in Statistics, . 2197-4136