Vai al contenuto principale della pagina
Autore: | Ashouri Amir H |
Titolo: | Automatic Tuning of Compilers Using Machine Learning / / by Amir H. Ashouri, Gianluca Palermo, John Cavazos, Cristina Silvano |
Pubblicazione: | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Edizione: | 1st ed. 2018. |
Descrizione fisica: | 1 online resource (XVII, 118 p. 23 illus., 6 illus. in color.) |
Disciplina: | 005.453 |
Soggetto topico: | Computational intelligence |
Programming languages (Electronic computers) | |
Computer simulation | |
Artificial intelligence | |
Computational Intelligence | |
Programming Languages, Compilers, Interpreters | |
Simulation and Modeling | |
Artificial Intelligence | |
Persona (resp. second.): | PalermoGianluca |
CavazosJohn | |
SilvanoCristina | |
Nota di bibliografia: | Includes bibliographical references at the end of each chapters and index. |
Nota di contenuto: | Background -- DSE Approach for Compiler Passes -- Addressing the Selection Problem of Passes using ML -- Intermediate Speedup Prediction for the Phase-ordering Problem -- Full-sequence Speedup Prediction for the Phase-ordering Problem -- Concluding Remarks. . |
Sommario/riassunto: | This book explores break-through approaches to tackling and mitigating the well-known problems of compiler optimization using design space exploration and machine learning techniques. It demonstrates that not all the optimization passes are suitable for use within an optimization sequence and that, in fact, many of the available passes tend to counteract one another. After providing a comprehensive survey of currently available methodologies, including many experimental comparisons with state-of-the-art compiler frameworks, the book describes new approaches to solving the problem of selecting the best compiler optimizations and the phase-ordering problem, allowing readers to overcome the enormous complexity of choosing the right order of optimizations for each code segment in an application. As such, the book offers a valuable resource for a broad readership, including researchers interested in Computer Architecture, Electronic Design Automation and Machine Learning, as well as computer architects and compiler developers. |
Titolo autorizzato: | Automatic Tuning of Compilers Using Machine Learning |
ISBN: | 3-319-71489-9 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910299586103321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |