Vai al contenuto principale della pagina
Titolo: | Algorithmic Learning Theory : 14th International Conference, ALT 2003, Sapporo, Japan, October 17-19, 2003, Proceedings / / edited by Ricard Gavaldà, Klaus P. Jantke, Eiji Takimoto |
Pubblicazione: | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2003 |
Edizione: | 1st ed. 2003. |
Descrizione fisica: | 1 online resource (XII, 320 p.) |
Disciplina: | 006.3/1 |
Soggetto topico: | Artificial intelligence |
Computers | |
Algorithms | |
Logic, Symbolic and mathematical | |
Natural language processing (Computer science) | |
Artificial Intelligence | |
Computation by Abstract Devices | |
Algorithm Analysis and Problem Complexity | |
Mathematical Logic and Formal Languages | |
Natural Language Processing (NLP) | |
Persona (resp. second.): | GavaldàRicard |
JantkeKlaus P | |
TakimotoEiji | |
Note generali: | Bibliographic Level Mode of Issuance: Monograph |
Nota di bibliografia: | Includes bibliographical references at the end of each chapters and index. |
Nota di contenuto: | Invited Papers -- Abduction and the Dualization Problem -- Signal Extraction and Knowledge Discovery Based on Statistical Modeling -- Association Computation for Information Access -- Efficient Data Representations That Preserve Information -- Can Learning in the Limit Be Done Efficiently? -- Inductive Inference -- Intrinsic Complexity of Uniform Learning -- On Ordinal VC-Dimension and Some Notions of Complexity -- Learning of Erasing Primitive Formal Systems from Positive Examples -- Changing the Inference Type – Keeping the Hypothesis Space -- Learning and Information Extraction -- Robust Inference of Relevant Attributes -- Efficient Learning of Ordered and Unordered Tree Patterns with Contractible Variables -- Learning with Queries -- On the Learnability of Erasing Pattern Languages in the Query Model -- Learning of Finite Unions of Tree Patterns with Repeated Internal Structured Variables from Queries -- Learning with Non-linear Optimization -- Kernel Trick Embedded Gaussian Mixture Model -- Efficiently Learning the Metric with Side-Information -- Learning Continuous Latent Variable Models with Bregman Divergences -- A Stochastic Gradient Descent Algorithm for Structural Risk Minimisation -- Learning from Random Examples -- On the Complexity of Training a Single Perceptron with Programmable Synaptic Delays -- Learning a Subclass of Regular Patterns in Polynomial Time -- Identification with Probability One of Stochastic Deterministic Linear Languages -- Online Prediction -- Criterion of Calibration for Transductive Confidence Machine with Limited Feedback -- Well-Calibrated Predictions from Online Compression Models -- Transductive Confidence Machine Is Universal -- On the Existence and Convergence of Computable Universal Priors. |
Titolo autorizzato: | Algorithmic Learning Theory |
ISBN: | 3-540-39624-1 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910144028803321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |