Vai al contenuto principale della pagina

Algorithmic Learning Theory : 14th International Conference, ALT 2003, Sapporo, Japan, October 17-19, 2003, Proceedings / / edited by Ricard Gavaldà, Klaus P. Jantke, Eiji Takimoto



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Algorithmic Learning Theory : 14th International Conference, ALT 2003, Sapporo, Japan, October 17-19, 2003, Proceedings / / edited by Ricard Gavaldà, Klaus P. Jantke, Eiji Takimoto Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2003
Edizione: 1st ed. 2003.
Descrizione fisica: 1 online resource (XII, 320 p.)
Disciplina: 006.3/1
Soggetto topico: Artificial intelligence
Computers
Algorithms
Logic, Symbolic and mathematical
Natural language processing (Computer science)
Artificial Intelligence
Computation by Abstract Devices
Algorithm Analysis and Problem Complexity
Mathematical Logic and Formal Languages
Natural Language Processing (NLP)
Persona (resp. second.): GavaldàRicard
JantkeKlaus P
TakimotoEiji
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references at the end of each chapters and index.
Nota di contenuto: Invited Papers -- Abduction and the Dualization Problem -- Signal Extraction and Knowledge Discovery Based on Statistical Modeling -- Association Computation for Information Access -- Efficient Data Representations That Preserve Information -- Can Learning in the Limit Be Done Efficiently? -- Inductive Inference -- Intrinsic Complexity of Uniform Learning -- On Ordinal VC-Dimension and Some Notions of Complexity -- Learning of Erasing Primitive Formal Systems from Positive Examples -- Changing the Inference Type – Keeping the Hypothesis Space -- Learning and Information Extraction -- Robust Inference of Relevant Attributes -- Efficient Learning of Ordered and Unordered Tree Patterns with Contractible Variables -- Learning with Queries -- On the Learnability of Erasing Pattern Languages in the Query Model -- Learning of Finite Unions of Tree Patterns with Repeated Internal Structured Variables from Queries -- Learning with Non-linear Optimization -- Kernel Trick Embedded Gaussian Mixture Model -- Efficiently Learning the Metric with Side-Information -- Learning Continuous Latent Variable Models with Bregman Divergences -- A Stochastic Gradient Descent Algorithm for Structural Risk Minimisation -- Learning from Random Examples -- On the Complexity of Training a Single Perceptron with Programmable Synaptic Delays -- Learning a Subclass of Regular Patterns in Polynomial Time -- Identification with Probability One of Stochastic Deterministic Linear Languages -- Online Prediction -- Criterion of Calibration for Transductive Confidence Machine with Limited Feedback -- Well-Calibrated Predictions from Online Compression Models -- Transductive Confidence Machine Is Universal -- On the Existence and Convergence of Computable Universal Priors.
Titolo autorizzato: Algorithmic Learning Theory  Visualizza cluster
ISBN: 3-540-39624-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910144028803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Artificial Intelligence ; ; 2842