Vai al contenuto principale della pagina

Power quality problems and mitigation techniques / / Bhim Singh, Ambrish Chandra, Kamal Al-Haddad



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Singh Bhim (Electrical engineer) Visualizza persona
Titolo: Power quality problems and mitigation techniques / / Bhim Singh, Ambrish Chandra, Kamal Al-Haddad Visualizza cluster
Pubblicazione: Chichester, England : , : Wiley, , 2015
©2015
Descrizione fisica: 1 online resource (599 p.)
Disciplina: 621.37/45
Soggetto topico: Electric power systems - Quality control
Electric power systems - Management
Electric power system stability
Persona (resp. second.): ChandraAmbrish
Al-HaddadKamal
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references at the end of each chapters and index.
Nota di contenuto: Power Quality Problems and Mitigation Techniques; Contents; Preface; About the Companion Website; 1. Power Quality: An Introduction; 1.1 Introduction; 1.2 State of the Art on Power Quality; 1.3 Classification of Power Quality Problems; 1.4 Causes of Power Quality Problems; 1.5 Effects of Power Quality Problems on Users; 1.6 Classification of Mitigation Techniques for Power Quality Problems; 1.7 Literature and Resource Material on Power Quality; 1.8 Summary; 1.9 Review Questions; References; 2. Power Quality Standards and Monitoring; 2.1 Introduction
2.2 State of the Art on Power Quality Standards and Monitoring 2.3 Power Quality Terminologies; 2.4 Power Quality Definitions; 2.5 Power Quality Standards; 2.6 Power Quality Monitoring; 2.6.1 Objectives of PQ Monitoring; 2.6.2 Justifications for PQ Monitoring; 2.7 Numerical Examples; 2.8 Summary; 2.9 Review Questions; 2.10 Numerical Problems; 2.11 Computer Simulation-Based Problems; References; 3. Passive Shunt and Series Compensation; 3.1 Introduction; 3.2 State of the Art on Passive Shunt and Series Compensators; 3.3 Classification of Passive Shunt and Series Compensators
3.3.1 Topology-Based Classification 3.3.2 Supply System-Based Classification; 3.3.2.1 Two-Wire Passive Compensators; 3.3.2.2 Three-Wire Passive Compensators; 3.4 Principle of Operation of Passive Shunt and Series Compensators; 3.5 Analysis and Design of Passive Shunt Compensators; 3.5.1 Analysis and Design of Single-Phase Passive Shunt Compensators; 3.5.1.1 Analysis and Design of Shunt Compensators for Power Factor Correction; 3.5.1.2 Analysis and Design of Shunt Compensators for Zero Voltage Regulation; 3.5.2 Analysis and Design of Three-Phase Three-Wire Passive Shunt Compensators
3.5.2.1 Analysis and Design of Shunt Compensators for Power Factor Correction 3.5.2.2 Analysis and Design of Shunt Compensators for Zero Voltage Regulation; 3.5.3 Analysis and Design of Three-Phase Four-Wire Passive Shunt Compensators; 3.5.3.1 Analysis and Design of Shunt Compensators for Power Factor Correction; 3.5.3.2 Analysis and Design of Shunt Compensators for Zero Voltage Regulation; 3.6 Modeling, Simulation, and Performance of Passive Shunt and Series Compensators; 3.7 Numerical Examples; 3.8 Summary; 3.9 Review Questions; 3.10 Numerical Problems
3.11 Computer Simulation-Based ProblemsReferences; 4. Active Shunt Compensation; 4.1 Introduction; 4.2 State of the Art on DSTATCOMs; 4.3 Classification of DSTATCOMs; 4.3.1 Converter-Based Classification; 4.3.2 Topology-Based Classification; 4.3.3 Supply System-Based Classification; 4.3.3.1 Two-Wire DSTATCOMs; 4.3.3.2 Three-Wire DSTATCOMs; 4.3.3.3 Four-Wire DSTATCOMs; 4.4 Principle of Operation and Control of DSTATCOMs; 4.4.1 Principle of Operation of DSTATCOMs; 4.4.2 Control of DSTATCOMs; 4.4.2.1 Unit template- or PI Controller-Based Control Algorithm of DSTATCOMs
4.4.2.2 PBT-Based Control Algorithm of DSTATCOMs
Sommario/riassunto: Maintaining a stable level of power quality in the distribution network is a growing challenge due to increased use of power electronics converters in domestic, commercial and industrial sectors. Power quality deterioration is manifested in increased losses; poor utilization of distribution systems; mal-operation of sensitive equipment and disturbances to nearby consumers, protective devices, and communication systems. However, as the energy-saving benefits will result in increased AC power processed through power electronics converters, there is a compelling need for improved understanding o
Titolo autorizzato: Power quality problems and mitigation techniques  Visualizza cluster
ISBN: 1-118-92206-9
1-118-92207-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910132308303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui