| Autore: |
Noumi, Masatoshi
|
| Titolo: |
Macdonald Polynomials : Commuting Family of q-Difference Operators and Their Joint Eigenfunctions / Masatoshi Noumi
|
| Pubblicazione: |
Singapore, : Springer, 2023 |
| Descrizione fisica: |
viii, 132 p. : ill. ; 24 cm |
| Soggetto topico: |
05E05 - Symmetric functions and generalizations [MSC 2020] |
| |
20C08 - Hecke algebras and their representations [MSC 2020] |
| |
33-XX - Special functions [MSC 2020] |
| |
33C45 - Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) [MSC 2020] |
| |
33C67 - Hypergeometric functions associated with root systems [MSC 2020] |
| |
33C80 - Connections of hypergeometric functions with groups and algebras, and related topics [MSC 2020] |
| |
33D45 - Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.) [MSC 2020] |
| |
33D50 - Orthogonal polynomials and functions in several variables expressible in terms of basic hypergeometric functions in one variable [MSC 2020] |
| |
33D52 - Basic orthogonal polynomials and functions associated with root systems (Macdonald polynomials, etc.) [MSC 2020] |
| |
33D67 - Basic hypergeometric functions associated with root systems [MSC 2020] |
| |
33D80 - Connections of basic hypergeometric functions with quantum groups, Chevalley groups, $p$-adic groups, Hecke algebras, and related topics [MSC 2020] |
| Soggetto non controllato: |
Macdonald polynomials |
| |
Quantum integrable systems |
| |
Symmetric functions |
| |
q$-difference equations |
| |
q-orthogonal polynomials |
| Titolo autorizzato: |
Macdonald Polynomials  |
| Formato: |
Materiale a stampa  |
| Livello bibliografico |
Monografia |
| Lingua di pubblicazione: |
Inglese |
| Record Nr.: | VAN00279243 |
| Lo trovi qui: | Univ. Vanvitelli |
| Localizzazioni e accesso elettronico |
https://doi.org/10.1007/978-981-99-4587-0 |
| Opac: |
Controlla la disponibilità qui |