Vai al contenuto principale della pagina

Macdonald Polynomials : Commuting Family of q-Difference Operators and Their Joint Eigenfunctions / Masatoshi Noumi



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Noumi, Masatoshi Visualizza persona
Titolo: Macdonald Polynomials : Commuting Family of q-Difference Operators and Their Joint Eigenfunctions / Masatoshi Noumi Visualizza cluster
Pubblicazione: Singapore, : Springer, 2023
Descrizione fisica: viii, 132 p. : ill. ; 24 cm
Soggetto topico: 05E05 - Symmetric functions and generalizations [MSC 2020]
20C08 - Hecke algebras and their representations [MSC 2020]
33-XX - Special functions [MSC 2020]
33C45 - Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) [MSC 2020]
33C67 - Hypergeometric functions associated with root systems [MSC 2020]
33C80 - Connections of hypergeometric functions with groups and algebras, and related topics [MSC 2020]
33D45 - Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.) [MSC 2020]
33D50 - Orthogonal polynomials and functions in several variables expressible in terms of basic hypergeometric functions in one variable [MSC 2020]
33D52 - Basic orthogonal polynomials and functions associated with root systems (Macdonald polynomials, etc.) [MSC 2020]
33D67 - Basic hypergeometric functions associated with root systems [MSC 2020]
33D80 - Connections of basic hypergeometric functions with quantum groups, Chevalley groups, $p$-adic groups, Hecke algebras, and related topics [MSC 2020]
Soggetto non controllato: Macdonald polynomials
Quantum integrable systems
Symmetric functions
q$-difference equations
q-orthogonal polynomials
Titolo autorizzato: Macdonald Polynomials  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: VAN00279243
Lo trovi qui: Univ. Vanvitelli
Localizzazioni e accesso elettronico https://doi.org/10.1007/978-981-99-4587-0
Opac: Controlla la disponibilità qui
Serie: SpringerBriefs in Mathematical Physics Berlin [etc.] . -Springer , 2014- ; 50