Vai al contenuto principale della pagina

Chirality, magnetism and magnetoelectricity : separate phenomena and joint effects in metamaterial structures / / Eugene Kamenetskii, editor



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Chirality, magnetism and magnetoelectricity : separate phenomena and joint effects in metamaterial structures / / Eugene Kamenetskii, editor Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2021]
©2021
Descrizione fisica: 1 online resource (587 pages)
Disciplina: 620.11
Soggetto topico: Metamaterials
Electronics - Materials
Magnetic materials
Persona (resp. second.): KamenetskiiEugene
Nota di contenuto: Intro -- Preface -- Contents -- Contributors -- 1 Chiral Coupling to Magnetodipolar Radiation -- 1.1 Introduction -- 1.2 Chiral Excitation of Spin Waves by Metallic Stripline -- 1.2.1 Oersted Magnetic Fields -- 1.2.2 Chiral Excitation of Spin Waves -- 1.3 Chiral Spin Wave Excitation and Absorption by a Magnetic Transducer -- 1.3.1 Chiral Magnetodipolar Field -- 1.3.2 Non-local Detection -- 1.3.3 Coherent Chiral Spin Wave Transmission -- 1.3.4 Incoherent Chiral Pumping -- 1.4 Conclusion and Outlook -- References -- 2 Surface Plasmons for Chiral Sensing -- 2.1 Introduction -- 2.1.1 Chirality and Optical Activity -- 2.1.2 Chiral Sensing Techniques -- 2.2 Surface Plasmon Resonance (SPR) -- 2.2.1 SPPs at a Metal-Dielectric Interface -- 2.2.2 SPPs at a Metal-Chiral Interface -- 2.3 CHISPR -- 2.3.1 Mechanism of Chiral-Dependent SPR-Reflectance Angular Split -- 2.3.2 Sensitivity of Chiral-Dependent SPR-reflectance Angular Split -- 2.3.3 Differential Measurements -- 2.4 Complete Measurement of Chirality -- 2.5 Optical Chirality Conservation -- 2.6 Discussion and Conclusions -- References -- 3 Spin-Polarized Plasmonics: Fresh View on Magnetic Nanoparticles -- 3.1 Introduction -- 3.2 Spin Polarization in Co Nanoparticles -- 3.3 Methods -- 3.4 Structural Properties -- 3.5 Magnetic Response -- 3.6 Optical Resonance in Spin-Polarized Co Nanoparticles -- 3.7 Effect of Dimers -- 3.8 Conclusions -- References -- 4 Chirality and Antiferromagnetism in Optical Metasurfaces -- 4.1 Introduction -- 4.1.1 Optical Elements -- 4.1.2 History of Optical Metasurfaces -- 4.2 Chirality of Light -- 4.2.1 Spin of a Photon and Spin Angular Momentum -- 4.2.2 Optical Vortices and Orbital Angular Momentum -- 4.3 Optical Chiral Metasurfaces -- 4.3.1 Plasmonic Chiral Metasurfaces -- 4.3.2 Chiral Nanosieves -- 4.3.3 Dielectric Chiral Metasurfaces and Anti-ferromagnetic Resonances.
4.4 Applications of Chiral Light and Metasurfaces -- 4.4.1 Circular Dichroism and Helical Dichroism -- 4.4.2 Chiral Meta-Optics -- 4.5 Conclusions -- References -- 5 Light-Nanomatter Chiral Interaction in Optical-Force Effects -- 5.1 Introduction -- 5.2 3D Near-Field CD by Optical-Force Measurement -- 5.2.1 Model and Method -- 5.2.2 CD Spectra and NF-CD Maps -- 5.2.3 CD of Optical Force -- 5.3 Optical Force to Rotate Nano-Particles in Nanoscale Area -- 5.3.1 Model and Method -- 5.3.2 Optical Force to Rotate the NP -- 5.3.3 Optical Current -- 5.4 Summary -- References -- 6 Magnetoelectricity of Chiral Micromagnetic Structures -- 6.1 Introduction. Chiral Structures of an Order Parameter -- 6.2 Microscopic Mechanisms of Spin Flexoelectricity -- 6.3 Chirality Dependent Domain Wall Motion -- 6.4 Chirality Dependent Bubble Domain Generation -- 6.5 Spin Flexoelectricity of Bloch Lines, Vortexes and Skyrmions -- 6.6 Conclusion -- Appendix: Experimental and Calculation Details -- References -- 7 Current-Induced Dynamics of Chiral Magnetic Structures: Creation, Motion, and Applications -- 7.1 Introduction -- 7.2 Continuum Model for the Magnetization -- 7.2.1 Magnetization Statics -- 7.2.2 Magnetization Dynamics in the Presence of Spin-Torques -- 7.3 Magnetic Solitons -- 7.4 Creation of Magnetic Solitons -- 7.4.1 Creation of One-Dimensional Solitons -- 7.4.2 Creation of Two-Dimensional Solitons -- 7.5 Motion of Magnetic Solitons -- 7.5.1 A Collective Coordinate Approximation: Thiele Equations of Motion -- 7.5.2 Magnetization Dynamics of Domain Walls in Nanowires -- 7.5.3 Magnetization Dynamics of Two-Dimensional Solitons -- 7.5.4 Magnetization Dynamics of Three-Dimensional Hopfions -- 7.6 Potential Applications -- 7.6.1 Storage and Logic Technologies -- 7.6.2 Unconventional Spintronics-Based Computing Schemes -- 7.7 Conclusion -- References.
8 Microwave-Driven Dynamics of Magnetic Skyrmions Under a Tilted Magnetic Field: Magnetic Resonances, Translational Motions, and Spin-Motive Forces -- 8.1 Introduction -- 8.2 Spin Model of the Skyrmion-Hosting Magnets -- 8.3 Microwave-Active Spin-Wave Modes -- 8.4 Microwave-Magnetic-Field-Driven Translational Motion of Skyrmion Crystal -- 8.5 Microwave-Electric-Field-Driven Translational Motion of Isolated Skyrmions -- 8.6 Electrically Driven Spin Torque and Dynamical Dzyaloshinskii-Moriya Interaction -- 8.7 Microwave-Induced DC Spin-Motive Force -- 8.8 Concluding Remarks -- References -- 9 Symmetry Approach to Chiral Optomagnonics in Antiferromagnetic Insulators -- 9.1 Introduction -- 9.2 Optical Chirality and Nongeometric Symmetries of the Maxwell's Equations -- 9.2.1 Symmetry Analysis of the Maxwell's Equations -- 9.2.2 Optical Chirality in Gyrotropic Media -- 9.3 Spin-Wave Chirality in Antiferromagnetic Insulators -- 9.3.1 Equations of Motion for Antiferromagnetic Spin Waves -- 9.3.2 Nongeometric Symmetries for Spin-Wave Dynamics -- 9.3.3 Conserving Chirality of Spin Waves -- 9.3.4 Spin-Wave Chirality in Dissipative Media -- 9.4 Excitation of Magnon Spin Photocurrents with Polarized Fields -- 9.4.1 Magnon Spin Currents in Antiferromagnets -- 9.4.2 Photo-Excitation of Magnon Spin Currents -- 9.4.3 Microscopic Theory of Magnon Spin Photocurrents -- 9.4.4 Magnon Spin Photocurrents in Antiferromagnetic Insulators and Low Dimensional Materials -- 9.5 Conclusions -- References -- 10 Realization of Artificial Chirality in Micro-/Nano-Scale Three-Dimensional Plasmonic Structures -- 10.1 Introduction -- 10.2 Chirality at the Micrometer-Scale or Higher: Top-Down Approach -- 10.2.1 Direct Laser Writing -- 10.2.2 Buckling Process Using Focused Ion Beam -- 10.3 Chirality at the Nanometer to Micrometer Scale -- 10.3.1 Electron Beam Lithography Overlay.
10.3.2 Glancing Angle Deposition -- 10.3.3 Unconventional Approaches -- 10.4 Chirality at a Nanometer Scale: Bottom-Up Approach -- 10.4.1 Molecular Self-assembly -- 10.4.2 DNA Self-assembly -- 10.4.3 Block Copolymer Self-assembly -- 10.5 Conclusion -- References -- 11 Floquet Theory and Ultrafast Control of Magnetism -- 11.1 Introduction -- 11.2 Floquet Engineering -- 11.2.1 Floquet Theorem -- 11.2.2 Discretized Fourier Transformation and Matrix Form of Schrødinger Equation -- 11.2.3 Floquet-Magnus Expansion and Floquet Hamiltonian -- 11.2.4 Physical Meaning of Floquet Hamiltonian -- 11.3 Laser and Typical Excitations in Solids -- 11.4 Floquet Engineering in Magnets -- 11.4.1 Inverse Faraday Effect by THz Laser -- 11.4.2 Ultrafast Control of Spin Chirality and Spin Current in Multiferroic Magnets -- 11.5 Summary and Outlook -- References -- 12 Magnetoelastic Waves in Thin Films -- 12.1 Introduction -- 12.2 Spin Waves -- 12.2.1 Magnetic Interactions and Magnetization Dynamics -- 12.2.2 Spin Waves in the Bulk Ferromagnets -- 12.2.3 Spin Waves in Ferromagnetic Thin Films -- 12.3 Elastic Waves -- 12.3.1 Elastodynamic Equations of Motion -- 12.3.2 Elastic Waves in Thin Films -- 12.4 Magnetoelastic Waves -- 12.4.1 Magnetoelastic Interactions -- 12.4.2 Magnetoelastic Waves in Thin Films -- 12.4.3 Damping of Magnetoelastic Waves -- 12.5 Conclusion -- References -- 13 Theoretical Generalization of the Optical Chirality to Arbitrary Optical Media -- 13.1 Introduction -- 13.2 Electromagnetic Energy Density in Dispersive and Lossy Media: A General Approach from the Continuity Equation -- 13.2.1 Poynting's Theorem and Energy Density in Non-Dispersive Media -- 13.2.2 Electromagnetic Energy Density in Dispersive Media: Lossless (Brillouin's Approach) and Lossy (Loudon's Approach) Cases -- 13.3 Generalizing the Conservation Law for the Optical Chirality.
13.4 Optical Chirality Density in Linear Dispersive Media -- 13.4.1 Optical Chirality Density in Dispersive and Lossless Media: Brillouin's Approach -- 13.4.2 Optical Chirality Density in Dispersive and Lossy Media: Loudon's Approach -- 13.4.3 Brillouin's Approach Vs Loudon's Approach -- 13.5 Conclusions and Outlook -- References -- 14 Topology in Magnetism -- 14.1 Introduction -- 14.2 Topological Spin Textures -- 14.2.1 Domain Walls -- 14.2.2 Vortices and Skyrmions -- 14.2.3 Hopfions -- 14.3 Topological Spin Waves -- 14.3.1 Topologically Protected Edge Spin Waves -- 14.3.2 3D Topological Spin Waves -- 14.4 Conclusion -- References -- 15 Topological Dynamics of Spin Texture Based Metamaterials -- 15.1 Introduction -- 15.2 Topological Structures, Properties, and Applications of Magnetic Solitons -- 15.3 The Topological Properties of Skyrmion Lattice -- 15.3.1 Large-Scale Micromagnetic Simulations -- 15.3.2 Theoretical Model -- 15.4 Corner States in a Breathing Kagome Lattice of Vortices -- 15.4.1 The Theoretical Results and Discussions -- 15.4.2 Micromagnetic Simulations -- 15.5 Corner States in a Breathing Honeycomb Lattice of Vortices -- 15.5.1 Theoretical Model -- 15.5.2 Corner States and Phase Diagram -- 15.5.3 Micromagnetic Simulations -- 15.6 Conclusion and Outlook -- References -- 16 Antiferromagnetic Skyrmions and Bimerons -- 16.1 Introduction -- 16.2 Current-Driven Creation, Motion, and Chaos of Antiferromagnetic Skyrmions and Bimerons -- 16.3 Spin Torque Nano-oscillators Based on Antiferromagnetic Skyrmions -- 16.4 Synthetic Antiferromagnetic Skyrmions Driven by the Spin Current -- 16.5 Antiferromagnetic Skyrmions Driven by the Magnetic Anisotropy Gradient -- 16.6 Pinning and Depinning of Antiferromagnetic Skyrmions -- 16.7 Summary -- References -- 17 Axion Electrodynamics in Magnetoelectric Media -- 17.1 Introduction.
17.2 Nondynamical Axion Electrodynamics.
Titolo autorizzato: Chirality, magnetism and magnetoelectricity  Visualizza cluster
ISBN: 3-030-62844-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996466749703316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Topics in applied physics ; ; Volume 138.