Vai al contenuto principale della pagina

Artificial Neural Networks and Machine Learning - ICANN 2011 [[electronic resource] ] : 21st International Conference on Artificial Neural Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part II / / edited by Timo Honkela, Włodzisław Duch, Mark Girolami, Samuel Kaski



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Artificial Neural Networks and Machine Learning - ICANN 2011 [[electronic resource] ] : 21st International Conference on Artificial Neural Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part II / / edited by Timo Honkela, Włodzisław Duch, Mark Girolami, Samuel Kaski Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Edizione: 1st ed. 2011.
Descrizione fisica: 1 online resource (XXII, 474 p.)
Disciplina: 006.3
Soggetto topico: Artificial intelligence
Computer science
Algorithms
Pattern recognition systems
Application software
Computer vision
Artificial Intelligence
Theory of Computation
Automated Pattern Recognition
Computer and Information Systems Applications
Computer Vision
Persona (resp. second.): HonkelaTimo
DuchWłodzisław
GirolamiMark
KaskiSamuel
Sommario/riassunto: This two volume set (LNCS 6791 and LNCS 6792) constitutes the refereed proceedings of the 21th International Conference on Artificial Neural Networks, ICANN 2011, held in Espoo, Finland, in June 2011. The 106 revised full or poster papers presented were carefully reviewed and selected from numerous submissions. ICANN 2011 had two basic tracks: brain-inspired computing and machine learning research, with strong cross-disciplinary interactions and applications.
Titolo autorizzato: Artificial Neural Networks and Machine Learning - ICANN 2011  Visualizza cluster
ISBN: 3-642-21738-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996465553603316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Theoretical Computer Science and General Issues, . 2512-2029 ; ; 6792