Vai al contenuto principale della pagina

Quantum machine learning : what quantum computing means to data mining / / Peter Wittek



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Wittek Peter Visualizza persona
Titolo: Quantum machine learning : what quantum computing means to data mining / / Peter Wittek Visualizza cluster
Pubblicazione: San Diego, California : , : Academic Press, , 2014
©2014
Edizione: First edition
Descrizione fisica: 1 online resource (176 p.)
Disciplina: 621.3822
Soggetto topico: Machine learning - Mathematical models
Data mining - Data processing
Quantum theory - Data processing
Soggetto genere / forma: Electronic books
Note generali: Description based upon print version of record
Nota di bibliografia: Includes bibliographical references
Nota di contenuto: Front Cover; Quantum Machine Learning: What Quantum Computing Meansto Data Mining; Copyright; Contents; Preface; Notations; Part One Fundamental Concepts; Chapter 1: Introduction; 1.1Learning Theory and Data Mining; 1.2.Why Quantum Computers?; 1.3.A Heterogeneous Model; 1.4.An Overview of Quantum Machine Learning Algorithms; 1.5.Quantum-Like Learning on Classical Computers; Chapter 2: Machine Learning; 2.1.Data-Driven Models; 2.2.Feature Space; 2.3.Supervised and Unsupervised Learning; 2.4.Generalization Performance; 2.5.Model Complexity; 2.6.Ensembles
2.7.Data Dependencies and Computational ComplexityChapter 3: Quantum Mechanics; 3.1.States and Superposition; 3.2.Density Matrix Representation and Mixed States; 3.3.Composite Systems and Entanglement; 3.4.Evolution; 3.5.Measurement; 3.6.Uncertainty Relations; 3.7.Tunneling; 3.8.Adiabatic Theorem; 3.9.No-Cloning Theorem; Chapter 4:Quantum Computing; 4.1.Qubits and the Bloch Sphere; 4.2.Quantum Circuits; 4.3.Adiabatic Quantum Computing; 4.4.Quantum Parallelism; 4.5.Grover''s Algorithm; 4.6.Complexity Classes; 4.7.Quantum Information Theory; Part Two Classical Learning Algorithms
Chapter 5:Unsupervised Learning5.1.Principal Component Analysis; 5.2.Manifold Embedding; 5.3.K-Means and K-Medians Clustering; 5.4.Hierarchical Clustering; 5.5.Density-Based Clustering; Chapter 6:Pattern Recognition and Neural Networks; 6.1.The Perceptron; 6.2.Hopfield Networks; 6.3.Feedforward Networks; 6.4.Deep Learning; 6.5.Computational Complexity; Chapter 7:Supervised Learning and Support Vector Machines; 7.1.K-Nearest Neighbors; 7.2.Optimal Margin Classifiers; 7.3.Soft Margins; 7.4.Nonlinearity and Kernel Functions; 7.5.Least-Squares Formulation; 7.6.Generalization Performance
7.7.Multiclass Problems7.8.Loss Functions; 7.9.Computational Complexity; Chapter 8:Regression Analysis; 8.1.Linear Least Squares; 8.2.Nonlinear Regression; 8.3.Nonparametric Regression; 8.4.Computational Complexity; Chapter 9:Boosting; 9.1.Weak Classifiers; 9.2.AdaBoost; 9.3.A Family of Convex Boosters; 9.4.Nonconvex Loss Functions; Part Three Quantum Computing and Machine Learning; Chapter 10:Clustering Structure and Quantum Computing; 10.1.Quantum Random Access Memory; 10.2.Calculating Dot Products; 10.3.Quantum Principal Component Analysis; 10.4.Toward Quantum Manifold Embedding
10.5.Quantum K-Means10.6.Quantum K-Medians; 10.7.Quantum Hierarchical Clustering; 10.8.Computational Complexity; Chapter 11:Quantum Pattern Recognition; 11.1.Quantum Associative Memory; 11.2.The Quantum Perceptron; 11.3.Quantum Neural Networks; 11.4.Physical Realizations; 11.4.Computational Complexity; Chapter 12:Quantum Classification; 12.1.Nearest Neighbors; 12.2.Support Vector Machines with Grover''s Search; 12.3.Support Vector Machines with Exponential Speedup; 12.4.Computational Complexity; Chapter 13:Quantum Process Tomography and Regression; 13.1.Channel-State Duality
13.2.Quantum Process Tomography
Sommario/riassunto: Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine L
Titolo autorizzato: Quantum machine learning  Visualizza cluster
ISBN: 0-12-801099-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996426328203316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Elsevier insights.