Vai al contenuto principale della pagina

Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey Visualizza cluster
Pubblicazione: Berlin ; ; Boston : , : De Gruyter, , [2025]
2025
Edizione: 1st ed.
Descrizione fisica: 1 online resource (X, 202 p.)
Soggetto topico: MATHEMATICS / Optimization
Soggetto non controllato: Mathematical optimization, Machine learning, Nonlinear optimization, Discrete optimization, Physics informed learning
Persona (resp. second.): BaumgärtnerLukas
BeecroftDamien
BethkeFranz
CaboussatAlexandre
CarlucciAntonio
ChewleSurahit
CotsOlivier
Cruz AlegríaSamuel A.
DuttoRémy
FackeldeyKonstantin
GaugerNicolas R.
GirardinMaude
GoseaIon Victor
GriewankAndreas
Grivet-TalociaStefano
HeinleinAlexander
HowardAmanda A.
JanSophie
KannanAswin
KopaničákováAlena
KrauseRolf
KreimeierTimo
LaporteSerge
PicassoMarco
PochampalliRohit
PokuttaSebastian
RabbenRobert Julian
SemlerPhillip
SharmaKartikey
ShyshkanovaGanna
SikorskiAlexander
SpiegelChristoph
StinisPanos
TointPh. L (Philippe L.)
TrottiKen
Van HentenryckPascal
WalterDaniel
WaltherAndrea
WeberMarcus
WeiserMartin
WeiserMartin
ZimmerMax
Nota di contenuto: Frontmatter -- Preface -- Acknowledgment -- Contents -- A framework to solve inverse problems for parametric PDEs using adaptive finite elements and neural networks -- Generation of value function data for bilevel optimal control and application to hybrid electric vehicle -- Graph neural networks to predict strokes from blood flow simulations -- Capturing the macroscopic behavior of molecular dynamics with membership functions -- Adaptive gradient-enhanced Gaussian process surrogates for inverse problems -- Multifidelity domain decomposition-based physics-informed neural networks and operators for time-dependent problems -- Constrained piecewise linear optimization by an active signature method -- Parallel trust-region approaches in neural network training -- Trustworthy optimization learning: a brief overview -- Compression-aware training of neural networks using Frank–Wolfe -- Approximation of generalized frequency response functions via vector fitting -- On the nonsmooth regularity condition LIKQ for different abs-normal representations -- Divergence of the ADAM algorithm with fixed-stepsize: a (very) simple example -- Index
Sommario/riassunto: Mathematical optimization and machine learning are closely related. This proceedings volume of the Thematic Einstein Semester 2023 of the Berlin Mathematics Research Center MATH+ collects recent progress on their interplay in topics such as discrete optimization, nonlinear programming, optimal control, first-order methods, multilevel optimization, machine learning in optimization, physics-informed learning, and fairness in machine learning.
Titolo autorizzato: Mathematical Optimization for Machine Learning  Visualizza cluster
ISBN: 3-11-137774-1
3-11-137677-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911024074903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: De Gruyter Proceedings in Mathematics Series