Vai al contenuto principale della pagina
| Titolo: |
Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey
|
| Pubblicazione: | Berlin ; ; Boston : , : De Gruyter, , [2025] |
| 2025 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (X, 202 p.) |
| Soggetto topico: | MATHEMATICS / Optimization |
| Soggetto non controllato: | Mathematical optimization, Machine learning, Nonlinear optimization, Discrete optimization, Physics informed learning |
| Persona (resp. second.): | BaumgärtnerLukas |
| BeecroftDamien | |
| BethkeFranz | |
| CaboussatAlexandre | |
| CarlucciAntonio | |
| ChewleSurahit | |
| CotsOlivier | |
| Cruz AlegríaSamuel A. | |
| DuttoRémy | |
| FackeldeyKonstantin | |
| GaugerNicolas R. | |
| GirardinMaude | |
| GoseaIon Victor | |
| GriewankAndreas | |
| Grivet-TalociaStefano | |
| HeinleinAlexander | |
| HowardAmanda A. | |
| JanSophie | |
| KannanAswin | |
| KopaničákováAlena | |
| KrauseRolf | |
| KreimeierTimo | |
| LaporteSerge | |
| PicassoMarco | |
| PochampalliRohit | |
| PokuttaSebastian | |
| RabbenRobert Julian | |
| SemlerPhillip | |
| SharmaKartikey | |
| ShyshkanovaGanna | |
| SikorskiAlexander | |
| SpiegelChristoph | |
| StinisPanos | |
| TointPh. L (Philippe L.) | |
| TrottiKen | |
| Van HentenryckPascal | |
| WalterDaniel | |
| WaltherAndrea | |
| WeberMarcus | |
| WeiserMartin | |
| WeiserMartin | |
| ZimmerMax | |
| Nota di contenuto: | Frontmatter -- Preface -- Acknowledgment -- Contents -- A framework to solve inverse problems for parametric PDEs using adaptive finite elements and neural networks -- Generation of value function data for bilevel optimal control and application to hybrid electric vehicle -- Graph neural networks to predict strokes from blood flow simulations -- Capturing the macroscopic behavior of molecular dynamics with membership functions -- Adaptive gradient-enhanced Gaussian process surrogates for inverse problems -- Multifidelity domain decomposition-based physics-informed neural networks and operators for time-dependent problems -- Constrained piecewise linear optimization by an active signature method -- Parallel trust-region approaches in neural network training -- Trustworthy optimization learning: a brief overview -- Compression-aware training of neural networks using Frank–Wolfe -- Approximation of generalized frequency response functions via vector fitting -- On the nonsmooth regularity condition LIKQ for different abs-normal representations -- Divergence of the ADAM algorithm with fixed-stepsize: a (very) simple example -- Index |
| Sommario/riassunto: | Mathematical optimization and machine learning are closely related. This proceedings volume of the Thematic Einstein Semester 2023 of the Berlin Mathematics Research Center MATH+ collects recent progress on their interplay in topics such as discrete optimization, nonlinear programming, optimal control, first-order methods, multilevel optimization, machine learning in optimization, physics-informed learning, and fairness in machine learning. |
| Titolo autorizzato: | Mathematical Optimization for Machine Learning ![]() |
| ISBN: | 3-11-137774-1 |
| 3-11-137677-X | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911024074903321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |