Vai al contenuto principale della pagina

Nonthermal Food Engineering Operations



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kumar Nitin Visualizza persona
Titolo: Nonthermal Food Engineering Operations Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (526 pages)
Altri autori: PanghalAnil  
GargM. K  
Nota di contenuto: Cover -- Series Page -- Title Page -- Copyright Page -- Preface -- Chapter 1 Artificial Intelligence (AI) in Food Processing -- 1.1 Introduction -- 1.2 Evolution of Artificial Intelligence -- 1.3 Artificial Intelligence in Food Processing -- 1.4 Artificial Neural Network (ANN) -- 1.4.1 Fats & -- Oils Quality Evaluation -- 1.4.2 Fruits Quality Evaluation -- 1.4.3 Dairy Products Quality Evaluation -- 1.4.4 Solvent Extraction -- 1.4.5 Microwave Assisted Extraction (MAE) -- 1.4.6 Ultrasound-Assisted Extraction (UAE) -- 1.4.7 Microwave Drying -- 1.4.8 Tray Drying -- 1.4.9 Osmotic Dehydration -- 1.4.10 Other Drying Process -- 1.4.11 Extrusion Process -- 1.4.12 Baking -- 1.4.13 Storage of Food Grains -- 1.5 Fuzzy Logic System -- 1.5.1 Fuzzy Logic Systems in Liquid Foods Processing -- 1.5.2 Fuzzy Logic Systems in Solid Foods Processing -- 1.5.3 Semisolid Products -- 1.5.4 Drying Process -- 1.5.5 Baking Process -- 1.5.6 Dairy Process -- 1.5.7 Thermal Process -- 1.5.8 Fermentation -- 1.6 Knowledge.Based Expert System (ES) -- 1.6.1 Applications of ES in the Food Processing Sector -- 1.7 Machine Learning System (ML) -- 1.7.1 Detection of Defects and Mechanical Damage in Fruits -- 1.7.2 ML in Foreign Material Detection -- 1.7.3 ML in Food Quality Evaluation -- 1.8 Conclusion -- References -- Chapter 2 Advances in Ultrasound in Food Industry -- 2.1 Introduction -- 2.2 Background of Ultrasound -- 2.3 Ultrasonic Waves -- 2.4 Applications of Ultrasonics in the Food Industry -- 2.4.1 Food Preservation -- 2.4.2 Food Processing -- 2.5 Detection of Fruit Quality -- 2.6 Ultrasound in Dairy Sector -- 2.7 Conclusion -- References -- Chapter 3 Biosensors in Food Quality and Safety -- 3.1 Introduction -- 3.2 What is a Biosensor? -- 3.2.1 Components of a Biosensor Diagnostic Technique -- 3.2.1.1 Biological Element -- 3.2.1.2 Physicochemical Transducer.
3.2.1.3 Detector/Recognition of Signal -- 3.2.2 Basic Working Mechanism of Biosensors -- 3.2.3 Important Characteristics of Biosensors -- 3.3 Categorization of Biosensors -- 3.3.1 Calorimetric Biosensors -- 3.3.2 Electrochemical Biosensors -- 3.3.2.1 Amperometric Biosensors -- 3.3.2.2 Potentiometric Biosensors -- 3.3.2.3 Conductometric Biosensors -- 3.3.3 Optical Biosensors -- 3.3.4 Microbial-Based Biosensors -- 3.3.4.1 Electrochemical Microbial Biosensors -- 3.3.4.2 Optical Microbial Biosensors -- 3.3.5 Affinity Biosensors -- 3.3.6 Plant Tissue Biosensors -- 3.3.7 Surface Plasmon Resonance (SPR) Biosensors -- 3.3.8 Acoustic Sensors -- 3.3.9 Aptamers -- 3.3.10 Molecularly Imprinted Polymers -- 3.3.11 Immunosensors -- 3.4 Application of Biosensors -- 3.4.1 Scenario of Available Biosensors for the Detection of Various Compounds Present in Food Products -- 3.4.2 Electrochemical Biosensors for Food Products -- 3.4.3 Optical Biosensor -- 3.4.4 Microbial Biosensors -- 3.4.5 Plant Tissue Biosensors -- 3.5 Future Prospects -- References -- Chapter 4 Cold Plasma: Principles and Applications -- 4.1 Introduction -- 4.2 Physics of Plasma -- 4.3 Methods of Generation -- 4.3.1 Dielectric Barrier Discharge (DBD) -- 4.3.2 Glow Discharge -- 4.3.3 Plasma Jet -- 4.3.4 Corona Discharge -- 4.3.5 High Voltage Pulse Discharge -- 4.4 Principles of Cold Plasma Decontamination -- 4.5 Plasma Speciesf Role in Microbial Inactivation -- 4.5.1 Reactive Oxygen and Reactive Nitrogen Species -- 4.6 Cold Plasma Affecting Microbial Cells -- 4.6.1 Effect on Cell Morphology -- 4.6.2 Impact on the Cell Membrane -- 4.6.3 Effect on Nucleic Acids -- 4.6.4 Impact on Enzyme and Proteins Activity -- 4.7 Limitations -- 4.8 Conclusion and Future Prospects -- References -- Chapter 5 Food Extrusion: An Approach to Wholesome Product -- 5.1 Introduction.
5.2 Principle and Components of Extrusion Equipment -- 5.3 Types of Extruders -- 5.3.1 Single Screw Extruders -- 5.3.2 Twin Screw Extruders -- 5.4 Food Product Based on Extrusion Technology -- 5.5 Effect of Extrusion Cooking on Nutritional Aspects of Food -- 5.6 New Research Area of Byproduct Waste Utilization -- 5.7 Conclusion -- References -- Chapter 6 Image Processing Technology, Imaging Techniques, and Their Application in the Food Processing Sector -- 6.1 Introduction -- 6.2 Image Processing Technology -- 6.2.1 Image Acquisition -- 6.2.2 Image Pre-Processing -- 6.2.3 Image Segmentation -- 6.2.4 Feature Extraction -- 6.2.5 Classification -- 6.3 Machine Learning Algorithms -- 6.4 Industrial Applications -- 6.5 Novel Imaging Techniques and Their Applications -- 6.5.1 Near Infrared Imaging -- 6.5.2 Multispectral and Hyperspectral Imaging -- 6.5.3 Raman Imaging -- 6.5.4 Laser Light Backscattering Imaging -- 6.5.5 Structured-Illumination Reflectance Imaging -- 6.5.6 Optical Coherence Tomography -- 6.6 Challenges and Opportunities -- References -- Chapter 7 Active and Passive Modified Atmosphere Packaging: Recent Advances -- 7.1 Introduction -- 7.2 Modified Atmosphere Packaging -- 7.2.1 Passive MAP -- 7.2.1.1 Gases Utilised in Modified Atmosphere Packaging -- 7.2.2 Active MAP -- 7.2.2.1 Active Ingredients -- 7.2.2.2 Dynamics of MAP -- 7.2.2.3 Design of Modified Atmosphere Packaging -- 7.2.2.4 Packaging Materials Used in MAP -- 7.2.3 MAP Combined with Other Preservative Techniques -- 7.2.3.1 Heat Treatment -- 7.2.3.2 Irradiation -- 7.2.3.3 UV Light Radiation -- 7.2.3.4 Ozone Gas -- 7.2.3.5 Edible or Wax Coatings -- 7.2.4 Effect of MAP on Quality of Fresh Produce -- 7.3 Final Remarks -- References -- Chapter 8 Membrane Processing Techniques in Food Engineering -- 8.1 Introduction -- 8.2 Overview of Membranes -- 8.3 Types of Membrane Separation Processes.
8.3.1 Pressure-Driven Processes -- 8.3.2 Filtration Spectrum -- 8.4 Filtration Modes -- 8.4.1 Dead-End Filtration -- 8.4.2 Crossflow Filtration -- 8.4.3 Hybrid-Flow Filtration -- 8.5 Membrane Structure -- 8.6 Important Terms Related to Membrane Processes -- 8.7 Operational Requirements of Membranes -- 8.8 Theoretical Models for Membrane Processes -- 8.9 Factors Affecting the Separation Processes -- 8.10 Major Advantages of Membranes -- 8.11 Microfiltration -- 8.11.1 Microfiltration Applications by Industry -- 8.12 Ultrafiltration -- 8.12.1 UF Applications -- 8.13 Nanofiltration -- 8.13.1 Applications of Nanofiltration -- 8.14 Application of Membrane Separation in Food Industry -- 8.15 Conclusion -- References -- Chapter 9 Nano Technology in Food Packaging -- 9.1 Introduction -- 9.2 Nanomaterials -- 9.2.1 Silver Nanomaterial (AgNPs) -- 9.2.2 Titanium Dioxide (TiO2) -- 9.2.3 Montmorillonite Clay (Nanoclay) -- 9.2.4 Nano Zinc Oxide -- 9.2.5 Nano Silica -- 9.2.6 Carbon Nanotubes (CNTs) -- 9.2.7 Nano Starch -- 9.2.8 Nanocellulose -- 9.3 Use of Nanotechnology in Improved Packaging -- 9.3.1 Improving the Mechanical Strength and Permeability Properties -- 9.3.2 Improving Thermal Stability -- 9.3.3 Accelerating the Biodegradation Process -- 9.4 Use of Nanotechnology in Active Packaging -- 9.4.1 Antimicrobial Packaging -- 9.4.2 Nanoemulsion -- 9.4.3 Oxygen Scavengers -- 9.4.4 Immobilization of Enzymes -- 9.5 Use of Nanotechnology in Smart Packaging -- 9.5.1 Oxygen Sensors -- 9.5.2 Nanosensors for Detection of Pathogens -- 9.5.3 Freshness Indicators -- 9.5.4 Time Temperature Indicators -- 9.6 Toxicological Aspects, Safety Consideration, and Migration of Nanoparticles -- 9.7 Future Outlook and Conclusion -- References -- Chapter 10 Polysaccharide-Based Bionanocomposites for Food Packaging -- 10.1 Introduction -- 10.2 Classification of Polysaccharides.
10.2.1 Plant-Based Polysaccharides -- 10.2.1.1 Starch -- 10.2.1.2 Cellulose -- 10.2.1.3 Galactomannans -- 10.2.2 Animal-Based Polysaccharides -- 10.2.2.1 Chitosan -- 10.2.2.2 Carrageenan -- 10.2.3 Microorganism-Based Polysaccharides -- 10.2.3.1 Xanthan Gum -- 10.2.3.2 Gellan Gum -- 10.2.3.3 Pullulan -- 10.2.3.4 FucoPol -- 10.3 Extraction and Purification of Polysaccharides -- 10.3.1 Extraction of Polysaccharides -- 10.3.1.1 Hot Water Extraction -- 10.3.1.2 Sequential Extraction Method -- 10.3.1.3 Dilute Alkali-Water Extraction -- 10.3.1.4 Microwave-Assisted Extraction -- 10.3.1.5 Ultrasound-Assisted Extraction -- 10.3.1.6 Enzyme-Assisted Extraction -- 10.3.1.7 Subcritical Water Extraction -- 10.3.2 Purification Techniques -- 10.3.2.1 Fractional Precipitation -- 10.3.2.2 Chromatographic Techniques -- 10.4 Polysaccharide-Based Bionanocomposite Fabrication Techniques -- 10.4.1 Solution Intercalation -- 10.4.2 In Situ Intercalative Polymerization -- 10.4.3 Melt Intercalation -- 10.4.4 Extrusion -- 10.4.5 Electrospinning Technique -- 10.4.6 Freeze-Drying Technique -- 10.5 Polysaccharide-Based Nanocomposites: Classification and Food Applications -- 10.5.1 Polysaccharide-Based Nanocomposites with Graphene/Carbon Nanotubes -- 10.5.2 Polysaccharide-Based Nanocomposites with Metal Oxides -- 10.5.2.1 Silver-Based Nanoparticles -- 10.5.2.2 Zinc Oxide Nanoparticles -- 10.5.2.3 Copper Oxide Nanoparticles -- 10.5.2.4 Titanium Dioxide Nanoparticles -- 10.5.3 Polysaccharides-Based Nanocomposites with Other Reinforcement Materials -- 10.5.3.1 Bionanocomposites Based on Starch -- 10.5.3.2 Bionanocomposites Based on Chitosan -- 10.5.3.3 Bionanocomposites Based on Cellulose -- 10.6 Conclusions -- References -- Chapter 11 Smart, Intelligent, and Active Packaging Systems for Shelf-Life Extension of Foods -- 11.1 Introduction -- 11.2 Novel Types of Food Packaging.
11.3 Regulatory Framework.
Titolo autorizzato: Nonthermal Food Engineering Operations  Visualizza cluster
ISBN: 1-119-77646-5
1-119-77645-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910877032303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilitĂ  qui