Vai al contenuto principale della pagina

Deep Generative Models [[electronic resource] ] : Third MICCAI Workshop, DGM4MICCAI 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings / / edited by Anirban Mukhopadhyay, Ilkay Oksuz, Sandy Engelhardt, Dajiang Zhu, Yixuan Yuan



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Mukhopadhyay Anirban Visualizza persona
Titolo: Deep Generative Models [[electronic resource] ] : Third MICCAI Workshop, DGM4MICCAI 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings / / edited by Anirban Mukhopadhyay, Ilkay Oksuz, Sandy Engelhardt, Dajiang Zhu, Yixuan Yuan Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Edizione: 1st ed. 2024.
Descrizione fisica: 1 online resource (256 pages)
Disciplina: 006.37
Soggetto topico: Computer vision
Machine learning
Education - Data processing
Application software
Computer Vision
Machine Learning
Computers and Education
Computer and Information Systems Applications
Altri autori: OksuzIlkay  
EngelhardtSandy  
ZhuDajiang  
YuanYixuan  
Nota di contenuto: Methods -- Applications -- Methodology. Causal inference. Latent interpretation. Generative factor analysis -- Mammography. Vessel imaging -- Surgical Videos.
Sommario/riassunto: This LNCS conference volume constitutes the proceedings of the third MICCAI Workshop, DGM4MICCAI 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 2023. The 23 full papers included in this volume were carefully reviewed and selected from 38 submissions. The conference presents topics ranging from methodology, causal inference, latent interpretation, generative factor analysis to applications such as mammography, vessel imaging, and surgical Videos.
Titolo autorizzato: Deep Generative Models  Visualizza cluster
ISBN: 3-031-53767-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910838281103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Computer Science, . 1611-3349 ; ; 14533