Vai al contenuto principale della pagina

Advanced antenna array engineering for 6G and beyond wireless communications / / Y. Jay Guo, Richard W. Ziolkowski



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Guo Y. Jay Visualizza persona
Titolo: Advanced antenna array engineering for 6G and beyond wireless communications / / Y. Jay Guo, Richard W. Ziolkowski Visualizza cluster
Pubblicazione: Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2022]
©2022
Descrizione fisica: 1 online resource (331 pages)
Disciplina: 621.3824
Soggetto topico: Antenna arrays
Wireless communication systems
Persona (resp. second.): ZiolkowskiRichard W.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- Chapter 1 A Perspective of Antennas for 5G and 6G -- 1.1 5G Requirements of Antenna Arrays -- 1.1.1 Array Characteristics -- 1.1.2 Frequency Bands -- 1.1.3 Component Integration and Antennas-in-Package (AiP) -- 1.2 6G and Its Antenna Requirements -- 1.3 From Digital to Hybrid Multiple Beamforming -- 1.3.1 Digital Beamforming -- 1.3.2 Hybrid Beamforming -- 1.4 Analog Multiple Beamforming -- 1.4.1 Butler Matrix -- 1.4.2 Luneburg Lenses -- 1.5 Millimeter-Wave Antennas -- 1.6 THz Antennas -- 1.7 Lens Antennas -- 1.8 SIMO and MIMO Multi-Beam Antennas -- 1.9 In-Band Full Duplex Antennas -- 1.10 Conclusions -- References -- Chapter 2 Millimeter-Wave Beamforming Networks -- 2.1 Circuit-Type BFNs: SIW-Based Butler and Nolen Matrixes -- 2.1.1 Butler Matrix for One-Dimensional Multi-Beam Arrays -- 2.1.2 Butler Matrix for a 1-D Multi-Beam Array with Low Sidelobes -- 2.1.3 Butler Matrix for 2-D Multi-Beam Arrays -- 2.1.4 Nolen Matrix -- 2.2 Quasi Optical BFNs: Rotman Lens and Reflectors -- 2.2.1 Rotman Lens -- 2.2.2 Reflectors -- 2.2.2.1 Single Reflectors -- 2.2.2.2 Dual Reflectors -- 2.3 Conclusions -- References -- Chapter 3 Decoupling Methods for Antenna Arrays -- 3.1 Electromagnetic Bandgap Structures -- 3.2 Defected Ground Structures -- 3.3 Neutralization Lines -- 3.4 Array-Antenna Decoupling Surfaces -- 3.5 Metamaterial Structures -- 3.6 Parasitic Resonators -- 3.7 Polarization Decoupling -- 3.8 Conclusions -- References -- Chapter 4 De-scattering Methods for Coexistent Antenna Arrays -- 4.1 De-scattering vs. Decoupling in Coexistent Antenna Arrays -- 4.2 Mantle Cloak De-scattering -- 4.3 Lumped-Choke De-scattering -- 4.4 Distributed-Choke De-scattering -- 4.5 Mitigating the Effect of HB Antennas on LB Antennas -- 4.6 Conclusions -- References -- Chapter 5 Differential-Fed Antenna Arrays.
5.1 Differential Systems -- 5.2 Differential-Fed Antenna Elements -- 5.2.1 Linearly Polarized Differential Antennas -- 5.2.2 Circularly Polarized Differential Antennas -- 5.3 Differential-Fed Antenna Arrays -- 5.3.1 Balanced Power Dividers -- 5.3.2 Differential-Fed Antenna Arrays Employing Balanced Power Dividers -- 5.4 Differential-Fed Multi-Beam Antennas -- 5.5 Conclusion -- References -- Chapter 6 Conformal Transmitarrays -- 6.1 Conformal Transmitarray Challenges -- 6.1.1 Ultrathin Element with High Transmission Efficiency -- 6.1.2 Beam Scanning and Multi-Beam Operation -- 6.2 Conformal Transmitarrays Employing Triple-Layer Elements -- 6.2.1 Element Designs -- 6.2.2 Conformal Transmitarray Design -- 6.3 Beam Scanning Conformal Transmitarrays -- 6.3.1 Scanning Mechanism -- 6.3.2 Experimental Results -- 6.3.3 Limits of the Beam Scanning Range -- 6.4 Conformal Transmitarray Employing Ultrathin Dual-Layer Huygens Elements -- 6.4.1 Huygens Surface Theory -- 6.4.2 Ultrathin Dual-Layer Huygens Elements -- 6.4.3 Conformal Transmitarray Design -- 6.5 Elliptically Conformal Multi-Beam Transmitarray with Wide-Angle Scanning Ability -- 6.5.1 Multi-Beam Transmitarray Design -- 6.5.2 Concept Verification Through Simulation -- 6.6 Conclusions -- References -- Chapter 7 Frequency-Independent Beam Scanning Leaky-Wave Antennas -- 7.1 Reconfigurable Fabry-Pérot (FP) LWA -- 7.1.1 Analysis of 1-D Fabry-Pérot LWA -- 7.1.2 Effect of Cj on the Leaky-Mode Dispersion Curves -- 7.1.3 Optimization of the FP Cavity Height -- 7.1.4 Antenna Prototype and Measured Results -- 7.2 Period-Reconfigurable SIW-Based LWA -- 7.2.1 Antenna Configuration and Element Design -- 7.2.2 Suppression of Higher-Order Harmonics -- 7.2.3 Element Activation States and Scanning Properties -- 7.2.4 Results and Discussion -- 7.2.4.1 Element Pattern and Antenna Prototype.
7.2.4.2 Radiation Patterns and S-Parameters -- 7.3 Reconfigurable Composite Right/Left-Handed LWA -- 7.3.1 Parametric Analysis -- 7.3.2 Initial Frequency-Scanning CRLH LWA -- 7.3.3 Reconfigurable Fixed-Frequency Scanning CRLH LWA -- 7.3.3.1 Antenna Configuration -- 7.3.3.2 DC Biasing Strategy -- 7.3.3.3 Simulation Results -- 7.3.3.4 Measured Results -- 7.3.3.5 Discussions -- 7.4 Two-Dimensional Multi-Beam LWA -- 7.4.1 Antenna Design -- 7.4.1.1 Horn BFN -- 7.4.1.2 Phase-Compensation Method -- 7.4.1.3 Phase Shifter Based on Phase Inverter -- 7.4.1.4 Fixed-Frequency Beam Scanning Leaky-Wave Antenna -- 7.4.2 Performance and Discussion -- 7.5 Conclusions -- References -- Chapter 8 Beam Pattern Synthesis of Analog Arrays -- 8.1 Thinned Antenna Arrays -- 8.1.1 Modified Iterative FFT -- 8.1.2 Examples of Thinned Arrays -- 8.2 Arrays with Rotated Elements -- 8.2.1 The Pattern of an Element-Rotated Array -- 8.2.2 Vectorial Shaped Pattern Synthesis Using Joint Rotation/Phase Optimization -- 8.2.3 The Algorithm -- 8.2.4 Examples of Pattern Synthesis Based on Element Rotation and Phase -- 8.2.4.1 Flat-Top Pattern Synthesis with a Rotated U-Slot Loaded Microstrip Antenna Array -- 8.2.4.2 Circular Flat-Top Pattern Synthesis for a Planar Array with Rotated Cavity-Backed Patch Antennas -- 8.3 Arrays with Tracking Abilities Employing Sum and Difference Patterns -- 8.3.1 Nonuniformly Spaced Dipole-Rotated Linear Array -- 8.3.2 PSO-Based Element Rotation and Position Optimization -- 8.3.3 Examples -- 8.3.3.1 Synthesis of a 56-Element Sparse Linear Dipole Array -- 8.3.3.2 Synthesizing Sum and Difference Patterns with Multi-Region SLL and XPL Constraints -- 8.4 Synthesis of SIMO Arrays -- 8.4.1 Analog Dual-Beam Antenna Arrays with Linear Phase Distribution -- 8.4.2 Phase-Only Optimization of Multi-Beam Arrays -- 8.4.3 The Algorithm -- 8.4.4 Simulation Examples.
8.5 Conclusions -- References -- Index -- EULA.
Sommario/riassunto: "Whilst 5G standards are in solid shape, the telecommunications industry faces tremendous engineering challenges in designing and deploying antennas which will not only deliver the expected 5G performance, but also can be installed in collocation with 4G antennas. It is expected that analogue antenna arrays will play a major part in enabling the cost-effective roll-out of 5G networks. Moreover, it is expected many 6G antennas will be mounted on airborne and spaceborne platforms. The nature of such space, air, and terrestrial integrated communications networks poses new challenges and demands for antennas with characteristics such as high gain, individually scannable multi-beams, immunity to interference, reconfigurability, and conformability to all platforms."--
Titolo autorizzato: Advanced antenna array engineering for 6G and beyond wireless communications  Visualizza cluster
ISBN: 1-119-71292-0
1-119-71294-7
1-119-71291-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910831025703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui