Vai al contenuto principale della pagina

SCADA security : machine learning concepts for intrusion detection and prevention / / Abdulmohsen Almalawi [and three others]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Almalawi Abdulmohsen Visualizza persona
Titolo: SCADA security : machine learning concepts for intrusion detection and prevention / / Abdulmohsen Almalawi [and three others] Visualizza cluster
Pubblicazione: Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
©2021
Descrizione fisica: 1 online resource (219 pages) : illustrations
Disciplina: 629.895583
Soggetto topico: Supervisory control systems
Automatic control - Security measures
Intrusion detection systems (Computer security)
Persona (resp. second.): TariZahir
FahadAdil
YiXun
Nota di bibliografia: Includes bibliographical references and index.
Sommario/riassunto: "This book provides insights into issues of SCADA security. Chapter 1 discusses how potential attacks against traditional IT can also be possible against SCADA systems. Chapter 2 gives background information on SCADA systems, their architectures, and main components. In Chapter 3, the authors describe SCADAVT, a framework for a SCADA security testbed based on virtualization technology. Chapter 4 introduces an approach called kNNVWC to find the k-nearest neighbours in large and high dimensional data. Chapter 5 describes an approach called SDAD to extract proximity-based detection rules, from unlabelled SCADA data, based on a clustering-based technique. In Chapter 6, the authors explore an approach called GATUD which finds a global and efficient anomaly threshold. The book concludes with a summary of the contributions made by this book to the extant body of research, and suggests possible directions for future research"--
Titolo autorizzato: SCADA security  Visualizza cluster
ISBN: 1-119-60635-7
1-5231-3709-6
1-119-60638-1
1-119-60607-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830869603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui