Vai al contenuto principale della pagina

Smart grid and enabling technologies / / Shady S. Refaat, Texas A&M University at Qatar, Doha, Qatar, Omar Ellabban, CSA Catapult Innovation Centre, Newport, UK, Sertac Bayhan, Qatar Environment and Energy Research Institute, Hamad bin Khalifa University, Doha, Qatar, Haitham Abu-Rub, Texas A&M University at Qatar, Doha, Qatar, Frede Blaabjerg, Aalborg University, Aalborg, Denmark, Miroslav M. Begovic, Texas A&M University, College Station, USA



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Refaat Shady S. Visualizza persona
Titolo: Smart grid and enabling technologies / / Shady S. Refaat, Texas A&M University at Qatar, Doha, Qatar, Omar Ellabban, CSA Catapult Innovation Centre, Newport, UK, Sertac Bayhan, Qatar Environment and Energy Research Institute, Hamad bin Khalifa University, Doha, Qatar, Haitham Abu-Rub, Texas A&M University at Qatar, Doha, Qatar, Frede Blaabjerg, Aalborg University, Aalborg, Denmark, Miroslav M. Begovic, Texas A&M University, College Station, USA Visualizza cluster
Pubblicazione: Hoboken, New Jersey : , : Wiley, , [2021]
©2021
Descrizione fisica: 1 online resource (510 pages)
Disciplina: 621.31
Soggetto topico: Smart power grids
Persona (resp. second.): BegovicMiroslav M. <1956->
EllabbanOmar
BlaabjergFrede
BayhanSertac
Abu-RubHaithem
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- Acknowledgments -- Preface -- List of Abbreviations -- Chapter 1 Smart Grid Architecture Overview -- 1.1 Introduction -- 1.2 Fundamentals of a Current Electric Power System -- 1.2.1 Electrical Power Generation -- 1.2.2 Electric Power Transmission -- 1.2.3 Electric Power Distribution -- 1.3 Limitations of the Traditional Power Grid -- 1.3.1 Lack of Circuit Capacity and Aging Assets -- 1.3.2 Operation Constraints -- 1.3.3 Self-Healing Grid -- 1.3.4 Respond to National Initiatives -- 1.4 Smart Grid Definition -- 1.5 Smart Grid Elements -- 1.5.1 Distributed Generation -- 1.5.2 Energy Storage -- 1.5.3 Demand Response -- 1.5.4 Integrated Communications -- 1.5.4.1 Communication Networks -- 1.5.4.2 Power Line Communication (PLC) -- 1.5.5 Customer Engagement -- 1.5.6 Sensors and PMU Units -- 1.5.7 Smart Meters and Advanced Metering Infrastructure -- 1.6 Smart Grid Control -- 1.7 Smart Grid Characteristics -- 1.7.1 Flexibility -- 1.7.2 Improved Efficiency -- 1.7.3 Smart Transportation -- 1.7.4 Demand Response Support -- 1.7.5 Reliability and Power Quality -- 1.7.6 Market‐Enabling -- 1.8 Transformation from Traditional Grid to Smart Grid -- 1.8.1 The Necessity for Paradigm Shift to SG -- 1.8.2 Basic Stages of the Transformation to SG -- 1.9 Smart Grid Enabling Technologies -- 1.9.1 Electrification -- 1.9.2 Decentralization -- 1.9.3 Digitalization and Technologies -- 1.10 Actions for Shifting toward Smart Grid Paradigm -- 1.10.1 Stages for Grid Modernization -- 1.10.2 When a Grid Becomes Smart Grid -- 1.11 Highlights on Smart Grid Benefits -- 1.12 Smart Grid Challenges -- 1.12.1 Accessibility and Acceptability -- 1.12.2 Accountability -- 1.12.3 Controllability -- 1.12.4 Interoperability -- 1.12.5 Interchangeability -- 1.12.6 Maintainability -- 1.12.7 Optimality -- 1.12.8 Security.
1.12.9 Upgradability -- 1.13 Smart Grid Cost -- 1.14 Organization of the Book -- References -- Chapter 2 Renewable Energy: Overview, Opportunities and Challenges -- 2.1 Introduction -- 2.2 Description of Renewable Energy Sources -- 2.2.1 Bioenergy Energy -- 2.2.2 Geothermal Energy -- 2.2.3 Hydropower Energy -- 2.2.4 Marine Energy -- 2.2.5 Solar Energy -- 2.2.5.1 Photovoltaic -- 2.2.5.2 Concentrated Solar Power -- 2.2.5.3 Solar Thermal Heating and Cooling -- 2.2.6 Wind Energy -- 2.3 Renewable Energy: Growth, Investment, Benefits and Deployment -- 2.4 Smart Grid Enable Renewables -- 2.5 Conclusion -- References -- Chapter 3 Power Electronics Converters for Distributed Generation -- 3.1 An Overview of Distributed Generation Systems with Power Electronics -- 3.1.1 Photovoltaic Technology -- 3.1.2 Wind Power Technology -- 3.1.3 Energy Storage Systems -- 3.2 Power Electronics for Grid-Connected AC Smart Grid -- 3.2.1 Voltage-Source Converters -- 3.2.1.1 Synchronous Reference Frame -- 3.2.1.2 Stationary Reference Frame -- 3.2.1.3 Grid Synchronization -- 3.2.1.4 Virtual Synchronous Generator Operation -- 3.2.2 Multilevel Power Converters -- 3.3 Power Electronics Enabled Autonomous AC Power Systems -- 3.3.1 Converter Level Controls in Microgrids -- 3.3.1.1 Master-slave Operation -- 3.3.1.2 f-P and V-Q Droops -- 3.3.1.3 V-P and f-Q Droops -- 3.3.1.4 Virtual Impedance Enabled Control -- 3.3.2 System Level Coordination Control -- 3.4 Power Electronics Enabled Autonomous DC Power Systems -- 3.4.1 Converter Level Controls -- 3.4.1.1 V-P and V-I Droop Control -- 3.4.1.2 Virtual Impedance Enabled Control -- 3.4.1.3 Extended Droop Control -- 3.4.1.4 Adaptative Droop Control in DC Microgrids -- 3.4.2 System Level Coordination Control -- 3.4.2.1 Centralized Control Scheme -- 3.4.2.2 Distributed Control Scheme -- 3.5 Conclusion -- References.
Chapter 4 Energy Storage Systems as an Enabling Technology for the Smart Grid -- 4.1 Introduction -- 4.2 Structure of Energy Storage System -- 4.3 Energy Storage Systems Classification and Description -- 4.4 Current State of Energy Storage Technologies -- 4.5 Techno-Economic Characteristics of Energy Storage Systems -- 4.6 Selection of Energy Storage Technology for Certain Application -- 4.7 Energy Storage Applications -- 4.8 Barriers to the Deployment of Energy Storage -- 4.9 Energy Storage Roadmap -- 4.10 Conclusion -- References -- Chapter 5 Microgrids: State-of-the-Art and Future Challenges -- 5.1 Introduction -- 5.2 DC Versus AC Microgrid -- 5.2.1 LVAC and LVDC Networks -- 5.2.2 AC Microgrid -- 5.2.3 DC Microgrid -- 5.3 Microgrid Design -- 5.3.1 Methodology for the Microgrid Design -- 5.3.2 Design Considerations -- 5.4 Microgrid Control -- 5.4.1 Primary Control Level -- 5.4.1.1 Droop-Based Control -- 5.4.1.2 Communication-Based Control -- 5.4.2 Secondary Control Level -- 5.4.3 Tertiary Control Level -- 5.5 Microgrid Economics -- 5.5.1 Capacity Planning -- 5.5.2 Operations Modeling -- 5.5.3 Financial Modeling -- 5.5.4 Barriers to Realizing Microgrids -- 5.6 Operation of Multi-Microgrids -- 5.7 Microgrid Benefits -- 5.7.1 Economic Benefits -- 5.7.2 Technical Benefits -- 5.7.3 Environmental Benefits -- 5.8 Challenges -- 5.9 Conclusion -- References -- Chapter 6 Smart Transportation -- 6.1 Introduction -- 6.2 Electric Vehicle Topologies -- 6.2.1 Battery EVs -- 6.2.2 Plug-in Hybrid EVs -- 6.2.3 Hybrid EVs -- 6.2.4 Fuel-Cell EVs -- 6.3 Powertrain Architectures -- 6.3.1 Series HEV Architecture -- 6.3.2 Parallel HEV Architecture -- 6.3.3 Series-Parallel HEV Architecture -- 6.4 Battery Technology -- 6.4.1 Battery Parameters -- 6.4.2 Common Battery Chemistries -- 6.5 Battery Charger Technology -- 6.5.1 Charging Rates and Options -- 6.5.2 Wireless Charging.
6.6 Vehicle to Grid (V2G) Concept -- 6.6.1 Unidirectional V2G -- 6.6.2 Bidirectional V2G -- 6.7 Barriers to EV Adoption -- 6.7.1 Technological Problems -- 6.7.2 Social Problems -- 6.7.3 Economic Problems -- 6.8 Trends and Future Developments -- 6.9 Conclusion -- References -- Chapter 7 Net Zero Energy Buildings -- 7.1 Introduction -- 7.2 Net Zero Energy Building Definition -- 7.3 Net Zero Energy Building Design -- 7.4 Net Zero Energy Building: Modeling, Controlling and Optimization -- 7.5 Net Zero Energy Community -- 7.6 Net Zero Energy Building: Trends, Benefits, Barriers and Efficiency Investments -- 7.7 Conclusion -- References -- Chapter 8 Smart Grid Communication Infrastructures -- 8.1 Introduction -- 8.2 Advanced Metering Infrastructure -- 8.3 Smart Grid Communications -- 8.3.1 Challenges of SG Communications -- 8.3.2 Requirements of SG Communications -- 8.3.3 Architecture of SG Communication -- 8.3.4 SG Communication Technologies -- 8.4 Conclusion -- References -- Chapter 9 Smart Grid Information Security -- 9.1 Introduction -- 9.2 Smart Grid Layers -- 9.2.1 The Power System Layer -- 9.2.2 The Information Layer -- 9.2.3 The Communication Layer -- 9.3 Attacking Smart Grid Network Communication -- 9.3.1 Physical Layer Attacks -- 9.3.2 Data Injection and Replay Attacks -- 9.3.3 Network-Based Attacks -- 9.4 Design of Cyber Secure and Resilient Industrial Control Systems -- 9.4.1 Resilient Industrial Control Systems -- 9.4.2 Areas of Resilience -- 9.4.2.1 Human Systems -- 9.4.2.2 Cyber Security -- 9.4.2.3 Complex Networks and Networked Control Systems -- 9.5 Cyber Security Challenges in Smart Grid -- 9.6 Adopting an Smart Grid Security Architecture Methodology -- 9.6.1 SG Security Objectives -- 9.6.2 Cyber Security Requirements -- 9.6.2.1 Attack Detection and Resilience Operations -- 9.6.2.2 Identification, and Access Control.
9.6.2.3 Secure and Efficient Communication Protocols -- 9.7 Validating Your Smart Grid -- 9.8 Threats and Impacts: Consumers and Utility Companies -- 9.9 Governmental Effort to Secure Smart Grids -- 9.10 Conclusion -- References -- Chapter 10 Data Management in Smart Grid -- 10.1 Introduction -- 10.2 Sources of Data in Smart Grid -- 10.3 Big Data Era -- 10.4 Tools to Manage Big Data -- 10.4.1 Apache Hadoop -- 10.4.2 Not Only SQL (NoSQL) -- 10.4.3 Microsoft HDInsight -- 10.4.4 Hadoop MapReduce -- 10.4.5 Cassandra -- 10.4.6 Storm -- 10.4.7 Hive -- 10.4.8 Plotly -- 10.4.9 Talend -- 10.4.10 Bokeh -- 10.4.11 Cloudera -- 10.5 Big Data Integration, Frameworks, and Data Bases -- 10.6 Building the Foundation for Big Data Processing -- 10.6.1 Big Data Management Platform -- 10.6.1.1 Acquisition and Recording -- 10.6.1.2 Extraction, Cleaning, and Prediction -- 10.6.1.3 Big Data Integration -- 10.6.2 Big Data Analytics Platform -- 10.6.2.1 Modeling and Analysis -- 10.6.2.2 Interpretation -- 10.7 Transforming Big Data for High Value Action -- 10.7.1 Decide What to Produce -- 10.7.2 Source the Raw Materials -- 10.7.3 Produce Insights with Speed -- 10.7.4 Deliver the Goods and Act -- 10.8 Privacy Information Impacts on Smart Grid -- 10.9 Meter Data Management for Smart Grid -- 10.10 Summary -- References -- Chapter 11 Demand-Management -- 11.1 Introduction -- 11.2 Demand Response -- 11.3 Demand Response Programs -- 11.3.1 Load-Response Programs -- 11.3.2 Price Response Programs -- 11.4 End-User Engagement -- 11.5 Challenges of DR within Smart Grid -- 11.6 Demand-Side Management -- 11.7 DSM Techniques -- 11.8 DSM Evaluation -- 11.9 Demand Response Applications -- 11.10 Summary -- References -- Chapter 12 Business Models for the Smart Grid -- 12.1 The Business Model Concept -- 12.2 The Electricity Value Chain -- 12.3 Electricity Markets.
12.4 Review of the Previous Proposed Smart Grid Business Models.
Sommario/riassunto: "A "smart grid" is an electrical grid which includes a variety of operational and energy measures including smart meters, smart appliances, renewable energy resources, and energy efficiency resources. Electronic power conditioning and control of the production and distribution of electricity are important aspects of the smart grid. Integration of renewable energy resources and energy storage into the smart grid involve many aspects, such as: efficiency, reliability and energy conversion cost, forecasting of energy production capability, safe connection to the electric grid and/or capability to control micro-grids, efficient energy storage with low environmental impact, development of advanced control and monitoring algorithms, and networking of the sources/consumers"--
Titolo autorizzato: Smart grid and enabling technologies  Visualizza cluster
ISBN: 1-119-42245-0
1-119-42246-9
1-119-42243-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830648903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: IEEE Press