Vai al contenuto principale della pagina

High energy density lithium batteries [[electronic resource] ] : materials, engineering, applications / / edited by Katerina E. Aifantis, Stephen A. Hackney, and R. Vasant Kumar



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: High energy density lithium batteries [[electronic resource] ] : materials, engineering, applications / / edited by Katerina E. Aifantis, Stephen A. Hackney, and R. Vasant Kumar Visualizza cluster
Pubblicazione: Weimheim, : Wiley-VCH, 2010
Descrizione fisica: 1 online resource (283 p.)
Disciplina: 621.312423
Soggetto topico: Lithium cells
Altri autori: AifantisKaterina E  
HackneyStephen Andrew  
KumarR. Vasant  
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: High Energy Density Lithium Batteries; Contents; Preface; List of Contributors; 1: Introduction to Electrochemical Cells; 1.1 What are Batteries?; 1.2 Quantities Characterizing Batteries; 1.2.1 Voltage; 1.2.2 Electrode Kinetics (Polarization and Cell Impedance); 1.2.2.1 Electrical Double Layer; 1.2.2.2 Rate of Reaction; 1.2.2.3 Electrodes Away from Equilibrium; 1.2.2.4 The Tafel Equation; 1.2.2.5 Example: Plotting a Tafel Curve for a Copper Electrode; 1.2.2.6 Other Limiting Factors; 1.2.2.7 Tafel Curves for a Battery; 1.2.3 Capacity; 1.2.4 Shelf-Life; 1.2.5 Discharge Curve/Cycle Life
1.2.6 Energy Density1.2.7 Specific Energy Density; 1.2.8 Power Density; 1.2.9 Service Life/Temperature Dependence; 1.3 Primary and Secondary Batteries; 1.4 Battery Market; 1.5 Recycling and Safety Issues; References; 2: Primary Batteries; 2.1 Introduction; 2.2 The Early Batteries; 2.3 The Zinc/Carbon Cell; 2.3.1 The Leclanché Cell; 2.3.2 The Gassner Cell; 2.3.3 Current Zinc/Carbon Cell; 2.3.3.1 Electrochemical Reactions; 2.3.3.2 Components; 2.3.4 Disadvantages; 2.4 Alkaline Batteries; 2.4.1 Electrochemical Reactions; 2.4.2 Components; 2.4.3 Disadvantages; 2.5 Button Batteries
2.5.1 Mercury Oxide Battery2.5.2 Zn/Ag2O Battery; 2.5.3 Metal-Air Batteries; 2.5.3.1 Zn/Air Battery; 2.5.3.2 Aluminum/Air Batteries; 2.6 Li Primary Batteries; 2.6.1 Lithium/Thionyl Chloride Batteries; 2.6.2 Lithium/Sulfur Dioxide Cells; 2.7 Oxyride Batteries; 2.8 Damage in Primary Batteries; 2.9 Conclusions; References; 3: A Review of Materials and Chemistry for Secondary Batteries; 3.1 The Lead-Acid Battery; 3.1.1 Electrochemical Reactions; 3.1.2 Components; 3.1.3 New Components; 3.2 The Nickel-Cadmium Battery; 3.2.1 Electrochemical Reactions; 3.3 Nickel-Metal Hydride (Ni-MH) Batteries
3.4 Secondary Alkaline Batteries3.4.1 Components; 3.5 Secondary Lithium Batteries; 3.5.1 Lithium-Ion Batteries; 3.5.2 Li-Polymer Batteries; 3.5.3 Evaluation of Li Battery Materials and Chemistry; 3.6 Lithium-Sulfur Batteries; 3.7 Conclusions; References; 4: Current and Potential Applications of Secondary Li Batteries; 4.1 Portable Electronic Devices; 4.2 Hybrid and Electric Vehicles; 4.3 Medical Applications; 4.3.1 Heart Pacemakers; 4.3.2 Neurological Pacemakers; 4.4 Application of Secondary Li Ion Battery Systems in Vehicle Technology; 4.4.1 Parallel Connection; 4.4.2 Series Connections
4.4.3 Limitations and Safety IssuesReferences; 5: Li-Ion Cathodes: Materials Engineering Through Chemistry; 5.1 Energy Density and Thermodynamics; 5.2 Materials Chemistry and Engineering of Voltage Plateau; 5.3 Multitransition Metal Oxide Engineering for Capacity and Stability; 5.4 Conclusion; References; 6: Next-Generation Anodes for Secondary Li-Ion Batteries; 6.1 Introduction; 6.2 Chemical Attack by the Electrolyte; 6.3 Mechanical Instabilities during Electrochemical Cycling; 6.4 Nanostructured Anodes; 6.5 Thin Film Anodes; 6.5.1 Sn-Based Thin Film Anodes; 6.5.2 Si-Based Thin Film Anodes
6.6 Nanofiber/Nanotube/Nanowire Anodes
Sommario/riassunto: Materials Engineering for High Density Energy Storage provides first-hand knowledge about the design of safe and powerful batteries and the methods and approaches for enhancing the performance of next-generation batteries. The book explores how the innovative approaches currently employed, including thin films, nanoparticles and nanocomposites, are paving new ways to performance improvement. The topic's tremendous application potential will appeal to a broad audience, including materials scientists, physicists, electrochemists, libraries, and graduate students.
Titolo autorizzato: High energy density lithium batteries  Visualizza cluster
ISBN: 3-527-63001-5
1-282-68631-3
9786612686313
3-527-63002-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830612003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui