Vai al contenuto principale della pagina
Autore: | Barbu Viorel |
Titolo: | Tangential boundary stabilization of Navier-Stokes equations / / Viorel Barbu, Irena Lasiecka, Roberto Triggiani |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , [2006] |
©2006 | |
Descrizione fisica: | 1 online resource (146 p.) |
Disciplina: | 510 s |
515/.353 | |
Soggetto topico: | Navier-Stokes equations |
Boundary layer | |
Mathematical optimization | |
Riccati equation | |
Persona (resp. second.): | LasieckaI <1948-> (Irena) |
TriggianiR <1942-> (Roberto) | |
Note generali: | "Volume 181, number 852 (first of 5 numbers)." |
Nota di bibliografia: | Includes bibliographical references. |
Nota di contenuto: | ""Contents""; ""Acknowledgements""; ""Chapter 1. Introduction""; ""Chapter 2. Main results""; ""Chapter 3. Proof of Theorems 2.1 and 2.2 on the linearized system ( 2.4): d = 3""; ""3.1. Abstract models of the linearized problem ( 2.3). Regularity ""; ""3.2. The operator D*A, D*:Hâ??(L[sup(2)](T))[sub(D)]""; ""3.3. A critical boundary property related to the boundary c.c. in ( 3.1.2e) ""; ""3.4. Some technical preliminaries; space and system decomposition "" |
""3.5. Theorem 2.1, general case d = 3: An infinite-dimensional open�loop boundary controller g satisfying the FCC (3.1.22)�(3.1.24) for the linearized system�""""3.6. Feedback stabilization of the unstable [sub(Z)]N�system ( 3.4.9) on Z[sup(u)][sub(N)] under the FDSA""; ""3.7. Theorem 2.2, case d = 3 under the FDSA: An open�loop boundary controller g satisfying the FCC ( 3.1.22)�( 3.1.24) for the linearized system�"" | |
""Chapter 4. Boundary feedback uniform stabilization of the linearized system( 3.1.4) via an optimal control problem and corresponding Riccati theory. Case d = 3""""4.0. Orientation""; ""4.1. The optimal control problem ( Case d = 3)""; ""4.2. Optimal feedback dynamics: the feedback semigroup and its generator on W""; ""4.3. Feedback synthesis via the Riccati operator""; ""4.4. Identification of the Riccati operator R in ( 4.1.8) with the operator R[sub(1)] in ( 4.3.1)"" | |
""4.5. A Riccati�type algebraic equation satisfied by the operator R on the domain D(A[sup2)][Sub(R)], Where A[sub(R)] is the feedback generator""""Chapter 5. Theorem 2.3(i): Well�posedness of the Navier�Stokes equations with Riccati�based boundary feedback control. Case d = 3 ""; ""Chapter 6. Theorem 2.3(ii): Local uniform stability of the Navier�Stokes equations with Riccati�based boundary feedback control""; ""Chapter 7. A PDE�interpretation of the abstract results in Sections 5 and 6""; ""Appendix A. Technical Material Complementing Section 3.1"" | |
""B.3. Completion of the proof of Theorem 2.5 and Theorem 2.6 for the N�S model (1.1), d = 2"" | |
Titolo autorizzato: | Tangential boundary stabilization of Navier-Stokes equations |
ISBN: | 1-4704-0456-7 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910829172703321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |