Vai al contenuto principale della pagina

Convex analysis in general vector spaces / / C Zalinescu



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Zalinescu C. <1952-> Visualizza persona
Titolo: Convex analysis in general vector spaces / / C Zalinescu Visualizza cluster
Pubblicazione: River Edge, N.J. ; ; London, : World Scientific, c2002
Edizione: 1st ed.
Descrizione fisica: 1 online resource (xx, 367 p. )
Disciplina: 515/.8
Soggetto topico: Convex functions
Convex sets
Functional analysis
Vector spaces
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references (p. 349-357) and index.
Nota di contenuto: ch. 1. Preliminary results on functional analysis. 1.1. Preliminary notions and results. 1.2. Closedness and interiority notions. 1.3. Open mapping theorems. 1.4. Variational principles. 1.5. Exercises. 1.6. Bibliographical notes -- ch. 2. Convex analysis in locally convex spaces. 2.1. Convex functions. 2.2. Semi-continuity of convex functions. 2.3. Conjugate functions. 2.4. The subdifferential of a convex function. 2.5. The general problem of convex programming. 2.6. Perturbed problems. 2.7. The fundamental duality formula. 2.8. Formulas for conjugates and e-subdifferentials, duality relations and optimality conditions. 2.9. Convex optimization with constraints. 2.10. A minimax theorem. 2.11. Exercises. 2.12. Bibliographical notes -- ch. 3. Some results and applications of convex analysis in normed spaces. 3.1. Further fundamental results in convex analysis. 3.2. Convexity and monotonicity of subdifferentials. 3.3. Some classes of functions of a real variable and differentiability of convex functions. 3.4. Well conditioned functions. 3.5. Uniformly convex and uniformly smooth convex functions. 3.6. Uniformly convex and uniformly smooth convex functions on bounded sets. 3.7. Applications to the geometry of normed spaces. 3.8. Applications to the best approximation problem. 3.9. Characterizations of convexity in terms of smoothness. 3.10. Weak sharp minima, well-behaved functions and global error bounds for convex inequalities. 3.11. Monotone multifunctions. 3.12. Exercises. 3.13. Bibliographical notes.
Sommario/riassunto: This text seeks to present the conjugate and sub/differential calculus using the method of perturbation functions in order to obtain the most general results in this field. Its secondary aim is to provide important applications of this calculus and of the properties of convex functions.
Titolo autorizzato: Convex analysis in general vector spaces  Visualizza cluster
ISBN: 981-277-709-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910828571703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui