Vai al contenuto principale della pagina

Numerical algorithms for personalized search in self-organizing information networks / / Sep Kamvar



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kamvar Sep <1977-> Visualizza persona
Titolo: Numerical algorithms for personalized search in self-organizing information networks / / Sep Kamvar Visualizza cluster
Pubblicazione: Princeton, N.J., : Princeton University Press, 2010
Edizione: Course Book
Descrizione fisica: 1 online resource (295 p.)
Disciplina: 025.5/24
Soggetto topico: Database searching - Mathematics
Information networks - Mathematics
Content analysis (Communication) - Mathematics
Self-organizing systems - Data processing
Algorithms
Internet searching - Mathematics
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Frontmatter -- Contents -- Tables -- Figures -- Acknowledgments -- Chapter One. Introduction -- PART I. World Wide Web -- Chapter Two. PageRank -- Chapter Three. The Second Eigenvalue of the Google Matrix -- Chapter Four. The Condition Number of the PageRank Problem -- Chapter Five. Extrapolation Algorithms -- Chapter Six. Adaptive PageRank -- Chapter Seven. BlockRank -- PART II. P2P Networks -- Chapter Eight. Query-Cycle Simulator -- Chapter Nine. Eigen Trust -- Chapter Ten. Adaptive P2P Topologies -- Chapter Eleven. Conclusion -- Bibliography
Sommario/riassunto: This book lays out the theoretical groundwork for personalized search and reputation management, both on the Web and in peer-to-peer and social networks. Representing much of the foundational research in this field, the book develops scalable algorithms that exploit the graphlike properties underlying personalized search and reputation management, and delves into realistic scenarios regarding Web-scale data. Sep Kamvar focuses on eigenvector-based techniques in Web search, introducing a personalized variant of Google's PageRank algorithm, and he outlines algorithms--such as the now-famous quadratic extrapolation technique--that speed up computation, making personalized PageRank feasible. Kamvar suggests that Power Method-related techniques ultimately should be the basis for improving the PageRank algorithm, and he presents algorithms that exploit the convergence behavior of individual components of the PageRank vector. Kamvar then extends the ideas of reputation management and personalized search to distributed networks like peer-to-peer and social networks. He highlights locality and computational considerations related to the structure of the network, and considers such unique issues as malicious peers. He describes the EigenTrust algorithm and applies various PageRank concepts to P2P settings. Discussion chapters summarizing results conclude the book's two main sections. Clear and thorough, this book provides an authoritative look at central innovations in search for all of those interested in the subject.
Titolo autorizzato: Numerical algorithms for personalized search in self-organizing information networks  Visualizza cluster
ISBN: 1-282-66584-7
9786612665844
1-4008-3706-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910811461703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui