Vai al contenuto principale della pagina

Far-Field Wireless Power Transfer and Energy Harvesting / / edited by Naoki Shinohara and Jiafeng Zhou



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Far-Field Wireless Power Transfer and Energy Harvesting / / edited by Naoki Shinohara and Jiafeng Zhou Visualizza cluster
Pubblicazione: Norwood, MA : , : Artech House, , [2023]
©2023
Edizione: First edition.
Descrizione fisica: 1 online resource (233 pages)
Disciplina: 002
Soggetto topico: Energy harvesting
Wireless power transmission
Persona (resp. second.): ShinoharaNaoki <1968->
ZhouJiafeng
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Intro -- Far-Field Wireless Power Transferand Energy Harvesting -- Contents -- Preface -- Chapter 1 General Introduction -- 1.1 History of Wireless Power Transfer and Energy Harvesting -- 1.2 Technical Introduction of WPT/Harvesting -- 1.2.1 Rectennas for WPT/Harvesting -- 1.2.2 Beamforming for WPT -- 1.3 Current Status of Commercialization/Regulation/Research on WPT/Harvesting -- References -- Chapter 2 In-Room Wide-Beam WPT and Its Applications -- 2.1 Overview of Wide-Beam WPT -- 2.2 Approximation of Received Power -- 2.3 Design of Receiving Antenna -- 2.4 Management of Received Power -- 2.5 Application of Health Monitoring Sensor -- 2.6 Application of Infrastructure Monitoring Sensor -- 2.7 Distributed WPT -- 2.8 Conclusion -- References -- Chapter 3 Radiative Wireless Power Transfer -- 3.1 Introduction -- 3.2 Transmitter -- 3.2.1 Wireless Power Transmitter -- 3.2.2 PWSN: Passive Nodes -- 3.3 Wireless Experimental Results -- 3.4 Discussion -- References -- Chapter 4 Wireless Power Transfer Enabled Wireless Communication -- 4.1 Introduction -- 4.2 WPT and Backscatter Channels -- 4.3 Backscatter Communication Principle and Channel Model -- 4.3.1 The Principle of Backscatter Communication -- 4.3.2 Channel Coding in Backscatter Communication -- 4.3.3 Dyadic Backscatter Channel and MIMO Backscatter -- 4.4 Demodulation of Backscatter Signal -- 4.4.1 Pulsewidth Measurement Demodulation -- 4.4.2 PSK Demodulation -- References -- Chapter 5 Medical Applications -- 5.1 Introduction -- 5.2 Planar Phase-Controlled Metasurface -- 5.2.1 Conformal Metasurfaces for Wireless Power Transfer -- 5.2.2 Wireless Power Transfer for Implantable Devices In Vivo -- 5.3 Wireless Optogenetics -- 5.3.1 Cavity Resonator Capable of Powering Ultrasmall Wireless Optogenetics -- 5.3.2 Peripheral Nerves Stimulations.
5.4 Introduction to Long-Range Wireless Communication Technology -- 5.5 Conclusion -- References -- Chapter 6 Indoor/Outdoor-Beam WPT with Beamforming -- 6.1 Indoor-Beam WPT -- 6.2 Outdoor-Beam WPT -- 6.3 Beam WPT in Space -- References -- Chapter 7 Solar Power Satellite -- 7.1 Introduction -- 7.2 History -- 7.3 Concepts -- 7.4 Challenges -- 7.4.1 Technical -- 7.4.2 Economic -- 7.4.3 Legal -- 7.4.4 Schedule -- 7.5 Conclusion -- References -- Chapter 8 Low-Power Integrated Circuit Design for Energy Harvesting -- 8.1 Introduction -- 8.2 RF Energy Harvesting System -- 8.3 RF Rectifier -- 8.3.1 Basic Topology of a Rectifier -- 8.3.2 Operating Principle -- 8.3.3 Internal Resistance Modeling of Multistage Rectifier -- 8.4 Design Challenge of Low-Power Active Rectifier IC -- 8.4.1 Transit Frequency -- 8.4.2 Structure of MOSFET Devices in n-Well Process -- 8.4.3 Vdrop Comparison -- 8.4.4 Cross-Coupled Architecture of an Active Rectifier -- 8.4.5 Multistage RF Active Rectifier -- 8.4.6 Design and Optimization of Flying Capacitance -- 8.5 Design Examples -- 8.5.1 Example No. 1 -- 8.5.2 Example No. 2 -- 8.5.3 Example No.3 -- 8.6 Conclusion -- References -- Chapter 9 Energy Harvesting for Smart Grid Application -- 9.1 Self-Powered Wireless Sensors in Smart Grid -- 9.2 Magnetic Field Energy Harvesting -- 9.2.1 Cabled-Clamped Magnetic Field Energy Harvester -- 9.2.2 Free-Standing Magnetic Field Energy Harvester -- 9.3 Electric Field Energy Harvesting -- 9.4 Conclusions -- References -- Chapter 10 Energy Harvesting from Low-Power Density Environments -- 10.1 Introduction -- 10.2 Wideband Antenna Design -- 10.3 Wide Beamwidth Antenna Design -- 10.3.1 Potential Modes of a Metasurface -- 10.3.2 Geometry of the Proposed Metasurface Antenna -- 10.3.3 Rectifier Design -- 10.3.4 Measurement Result -- 10.4 Conclusion -- References.
Chapter 11 Metamaterials and Metasurfaces for Wireless Energy Harvesting -- 11.1 Introduction -- 11.2 Design of Single-Mode Resonant Metasurfaces for Energy Harvesting -- 11.2.1 Design of Ring-Shaped Wi-Fi Band Energy Harvester -- 11.2.2 Complementary Split-Ring Resonator High-Frequency Wi-Fi Energy Harvester Design -- 11.3 Design of Multimode Resonant Metasurfaces for Energy Harvesting -- 11.3.1 Design of Energy Harvester with Nested Ring Structure -- 11.3.2 Design of Butterfly-Type Metasurfaces for Three-Band Energy Harvester -- 11.4 Design of Rectifying Metasurfaces -- 11.4.1 Metasurfaces Element and Rectifier Design -- 11.4.2 Array Design and Testing of RMS -- 11.5 An Optically Transparent Metantenna for RF Wireless Energy Harvesting -- 11.5.1 Design of Optically Transparent Metantenna -- 11.5.2 Wireless Energy Harvesting Performance -- 11.6 Summary and Conclusion -- References -- List of Acronyms -- About the Editors -- List of Contributors -- Index.
Titolo autorizzato: Far-Field Wireless Power Transfer and Energy Harvesting  Visualizza cluster
ISBN: 1-63081-913-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910795723903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui