Vai al contenuto principale della pagina
Autore: | Lehmkuhl Thomas |
Titolo: | Compactification of the Drinfeld modular surfaces / / Thomas Lehmkuhl |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
©2009 | |
Descrizione fisica: | 1 online resource (113 p.) |
Disciplina: | 512/.42 |
Soggetto topico: | Drinfeld modules |
Deformations (Mechanics) | |
Surfaces, Algebraic | |
Note generali: | "January 2009, volume 197, number 921 (third of 5 numbers)." |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | ""Contents""; ""Introduction""; ""Chapter 1. Line Bundles""; ""1. Basic notions""; ""2. Homomorphisms of line bundles""; ""3. Quotients""; ""4. The convergence lemma""; ""Chapter 2. Drinfeld Modules""; ""1. Analytical definition of Drinfeld modules""; ""2. The category of Drinfeld modules""; ""3. Drinfeld modules over fields""; ""4. Level structures""; ""5. Modular manifolds""; ""6. Pseudo-Drinfeld modules""; ""Chapter 3. Deformation Theory""; ""1. Deformations of Drinfeld modules""; ""2. Deformations of isogenies""; ""3. Deformations of level structures"" |
""4. Smoothness of the moduli spaces""""5. Group action on the moduli space""; ""Chapter 4. Tate Uniformization""; ""1. Formal schemes""; ""2. Good and stable reduction""; ""3. Lattices and Tate data""; ""4. Group action""; ""Chapter 5. Compactification of the Modular Surfaces""; ""1. Formal representability of Tate data""; ""2. The universal Drinfeld module with bad reduction""; ""3. Algebraization""; ""Appendix""; ""A. Induced schemes""; ""B. Construction of coherent sheaves""; ""Bibliography""; ""Glossary of Notations""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H"" | |
""I""""K""; ""L""; ""M""; ""P""; ""Q""; ""R""; ""S""; ""T"" | |
Titolo autorizzato: | Compactification of the Drinfeld modular surfaces |
ISBN: | 1-4704-0527-X |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910788854003321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |