Vai al contenuto principale della pagina
| Autore: |
Vaccaro Alfredo
|
| Titolo: |
Data Mining in Smart Grids
|
| Pubblicazione: | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica: | 1 online resource (116 p.) |
| Soggetto topico: | Information technology industries |
| Soggetto non controllato: | case-based reasoning |
| computational intelligence | |
| data matching | |
| data mining | |
| data preprocessing | |
| data visualization | |
| decentral smart grid control (DSGC) | |
| decentralized control architecture | |
| DSHW | |
| dynamic Bayesian network | |
| fuzzy rule-based classifiers | |
| gas insulated switchgear | |
| interpretable and accurate DSGC-stability prediction | |
| Markov model | |
| multi-agent systems | |
| multi-objective evolutionary optimization | |
| NN-AR | |
| numerical weather prediction | |
| partial discharge | |
| power systems resilience | |
| probabilistic modeling | |
| resilience models | |
| smart grid | |
| t-SNE algorithm | |
| TBATS | |
| time-series clustering | |
| variational autoencoder | |
| voltage regulation | |
| wind power generation | |
| Persona (resp. second.): | VaccaroAlfredo |
| Sommario/riassunto: | Effective smart grid operation requires rapid decisions in a data-rich, but information-limited, environment. In this context, grid sensor data-streaming cannot provide the system operators with the necessary information to act on in the time frames necessary to minimize the impact of the disturbances. Even if there are fast models that can convert the data into information, the smart grid operator must deal with the challenge of not having a full understanding of the context of the information, and, therefore, the information content cannot be used with any high degree of confidence. To address this issue, data mining has been recognized as the most promising enabling technology for improving decision-making processes, providing the right information at the right moment to the right decision-maker. This Special Issue is focused on emerging methodologies for data mining in smart grids. In this area, it addresses many relevant topics, ranging from methods for uncertainty management, to advanced dispatching. This Special Issue not only focuses on methodological breakthroughs and roadmaps in implementing the methodology, but also presents the much-needed sharing of the best practices. Topics include, but are not limited to, the following: Fuzziness in smart grids computing Emerging techniques for renewable energy forecasting Robust and proactive solution of optimal smart grids operation Fuzzy-based smart grids monitoring and control frameworks Granular computing for uncertainty management in smart grids Self-organizing and decentralized paradigms for information processing |
| Titolo autorizzato: | Data Mining in Smart Grids ![]() |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910557722403321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |