Vai al contenuto principale della pagina

Mean field game and its applications in wireless networks / / Reginald A. Banez [and three others]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Banez Reginald A. Visualizza persona
Titolo: Mean field game and its applications in wireless networks / / Reginald A. Banez [and three others] Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2021]
©2021
Descrizione fisica: 1 online resource (184 pages)
Disciplina: 530.144
Soggetto topico: Mean field theory
Nota di contenuto: Intro -- Preface -- Contents -- Acronyms -- 1 Overview of Mean Field Games in Wireless Networks -- 1.1 Background and Requirements -- 1.1.1 Technical Requirements -- 1.1.2 Enabling Technologies -- 1.2 5G/6G Wireless Networks -- 1.2.1 Ultra-Dense Networks -- 1.2.2 Device-to-Device Communications -- 1.2.3 Internet-of-Things -- 1.2.4 Unmanned Aerial Vehicle Networks -- 1.2.5 Mobile Edge Networks -- 1.3 Introduction to Mean Field Games -- 1.4 Research Works on Mean Field Games in Wireless Networks -- 1.4.1 Single-Population Mean Field Games for Ultra-Dense Networks -- 1.4.2 Multiple-Population Mean Field Game for Social Networks -- 1.4.3 Mean-Field-Type Game for Multi-Access Edge Computing Networks -- 1.5 Organization and Summary -- References -- 2 Introduction to Mean Field Games and Mean-Field-Type Games -- 2.1 Introduction -- 2.1.1 Basic Concepts of Game Theory -- 2.1.1.1 Extensive-Form and Strategic-Form Games -- 2.1.1.2 Pure Strategies and Mixed Strategies -- 2.1.1.3 Nash Equilibrium -- 2.1.2 Mean Field Games and Related Fields of Study -- 2.2 Optimal Control Theory -- 2.2.1 Deterministic Optimal Control -- 2.2.1.1 Dynamic Programming Principle -- 2.2.1.2 Hamilton-Jacobi-Bellman Equation -- 2.2.2 Stochastic Optimal Control -- 2.2.2.1 Stochastic Process and Stochastic Differential Equations -- 2.2.2.2 Ito Stochastic Differentiation Rule -- 2.2.2.3 Stochastic Optimal Control Problem -- 2.2.2.4 Dynamic Programming Principle -- 2.2.2.5 Hamilton-Jacobi-Bellman Equation -- 2.3 Differential Games -- 2.3.1 Deterministic Differential Games -- 2.3.2 Stochastic Differential Games -- 2.4 Mean Field Games -- 2.4.1 Background and Motivation -- 2.4.2 Analytic Solution -- 2.4.3 Numerical Methods -- 2.4.4 Linear-Quadratic Mean Field Games -- 2.4.5 Multiple-Population Mean Field Games -- 2.5 Mean-Field-Type Games -- 2.5.1 Background.
2.5.2 Linear-Quadratic Mean-Field-Type Control -- 2.5.3 Linear-Quadratic Mean-Field-Type Games -- References -- 3 A Survey of Mean Field Game Applications in Wireless Networks -- 3.1 Ultra-Dense Networks -- 3.1.1 Overview of Ultra-Dense Networks -- 3.1.2 Research Opportunities and Challenges -- 3.1.3 Proposed Mean Field Game Solutions -- 3.1.3.1 Interference Management -- 3.1.3.2 Propagation Modeling -- 3.1.3.3 Energy Efficiency -- 3.1.3.4 Scheduling -- 3.1.4 Summary -- 3.2 Device-to-Device Communications and Internet-of-Things -- 3.2.1 Overview of Device-to-Device Communications and Internet-of-Things -- 3.2.2 Research Opportunities and Challenges -- 3.2.3 Proposed Mean Field Game Solutions -- 3.2.3.1 Interference Management and Power Control -- 3.2.3.2 Proximity Services -- 3.2.3.3 Network Security -- 3.2.4 Summary -- 3.3 Unmanned Aerial Vehicle Networks -- 3.3.1 Overview of Unmanned Aerial Vehicle Networks -- 3.3.2 Research Opportunities and Challenges -- 3.3.3 Proposed Mean Field Game Solutions -- 3.3.3.1 Channel Modeling -- 3.3.3.2 Energy Efficiency -- 3.3.3.3 Deployment -- 3.3.3.4 Trajectory Optimization -- 3.3.4 Summary -- 3.4 Mobile Edge Networks -- 3.4.1 Overview of Mobile Edge Networks -- 3.4.2 Research Opportunities and Challenges -- 3.4.3 Proposed Mean Field Game Solutions -- 3.4.3.1 Latency and Energy Consumption Optimization -- 3.4.3.2 Resource Management -- 3.4.3.3 Caching -- 3.4.3.4 Computation Offloading -- 3.4.4 Summary -- References -- 4 Mean Field Game Applications in Ultra-Dense 5G, 6G, and Beyond Wireless Networks -- 4.1 Introduction -- 4.2 Ultra-Dense Device-to-Device Networks -- 4.2.1 System Model and Problem Formulation -- 4.2.2 Differential Game Model for Power Control -- 4.2.2.1 State Space -- 4.2.2.2 Cost Function -- 4.2.3 Optimal Control Problem and Mean Field Equilibrium.
4.3 Ultra-Dense Unmanned Aerial Vehicles Networks -- 4.3.1 System Model -- 4.3.2 Mean Field Game Problem Formulation and Analysis -- 4.4 User-Dense Multi-Access Edge Computing Systems -- 4.4.1 Single-Resource Case -- 4.4.2 Multi-Resource Case -- References -- 5 Multiple-Population Mean Field Game for Social Networks -- 5.1 System Model -- 5.1.1 Opinion Dynamics Equation -- 5.1.2 Cost Function -- 5.2 Mean Field Game with Single Population -- 5.2.1 Background -- 5.2.2 A Mean Field Game Problem for Single-Population Social Networks -- 5.3 Mean Field Game with Several Populations -- 5.3.1 Background and Motivation -- 5.3.2 A Mean Field Game Problem for Multiple-Population Social Networks -- 5.4 Adjoint Method for Mean Field Games with Several Populations -- 5.4.1 Background -- 5.4.2 Adjoint Method for the Social Network Problems -- 5.5 Numerical Method for Mean Field Games with Several Populations -- 5.5.1 Background -- 5.5.2 Numerical Method for the Social Network Problems -- 5.6 Simulation Results and Discussion -- 5.6.1 Theoretical Results -- 5.6.2 Experimental Results with Real Dataset -- 5.6.2.1 Description of the Dataset -- 5.6.2.2 Processing of the Dataset -- 5.6.2.3 Procedure of the Experiment -- 5.6.2.4 Results and Analysis -- 5.6.3 Performance Analysis -- 5.7 Related Works -- 5.8 Conclusion -- References -- 6 Mean-Field-Type Game for Multi-Access Edge Computing Networks -- 6.1 System Model -- 6.1.1 Cost Functions -- 6.1.2 Network State Dynamics Equation -- 6.2 Mean-Field-Type Game Problem Formulation -- 6.2.1 Preliminaries -- 6.2.2 Cost Functions -- 6.2.3 Network State Dynamics Equation -- 6.2.4 Non-cooperative Problem -- 6.2.5 Cooperative Problem -- 6.3 Linear-Quadratic Mean-Field-Type-Game Solution Using a Direct Method -- 6.3.1 Non-cooperative Solution -- 6.3.2 Cooperative Solution.
6.4 Mean-Field-Type Game Based Computation Offloading Algorithms -- 6.4.1 Non-cooperative Computation Offloading -- 6.4.2 Cooperative Computation Offloading -- 6.5 Performance Evaluation -- 6.5.1 Baseline Approaches -- 6.5.2 Performance Metrics -- 6.6 Simulation Results and Discussion -- 6.6.1 Simulation Setup -- 6.6.2 Optimal Offloading Control -- 6.6.3 Network Efficiency -- 6.6.4 System Cost and Benefit-Cost Ratio -- 6.7 Related Works -- 6.8 Conclusion -- References.
Titolo autorizzato: Mean field game and its applications in wireless networks  Visualizza cluster
ISBN: 3-030-86905-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910508445103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Wireless networks (Springer (Firm))