Vai al contenuto principale della pagina

Emerging treatment technologies for waste management / / Izharul Haq, Ajay S. Kalamdhad



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Haq Izharul Visualizza persona
Titolo: Emerging treatment technologies for waste management / / Izharul Haq, Ajay S. Kalamdhad Visualizza cluster
Pubblicazione: Singapore : , : Springer, , [2021]
©2021
Descrizione fisica: 1 online resource (265 pages)
Disciplina: 628.3
Soggetto topico: Sewage - Purification
Water reuse
Depuració de l'aigua
Reutilització de l'aigua
Soggetto genere / forma: Llibres electrònics
Persona (resp. second.): KalamdhadAjay S.
Nota di contenuto: Intro -- Preface -- Acknowledgments -- Contents -- Editors and Contributors -- 1: Recent Advances in Physicochemical and Biological Approaches for Degradation and Detoxification of Industrial Wastewater -- 1.1 Introduction -- 1.2 Sources and Characteristics of Industrial Wastewater -- 1.2.1 Pulp Paper Industry Wastewater -- 1.2.2 Distillery Industry Wastewater -- 1.2.3 Textile Industry Wastewater -- 1.2.4 Tannery Industry Wastewater -- 1.2.5 Pharmaceutical Industry Wastewater -- 1.2.6 Chemical Industry Wastewater -- 1.3 Industrial Wastewater Treatment Technology -- 1.3.1 Physicochemical Treatment Approaches -- 1.3.1.1 Screening -- 1.3.1.2 Comminution -- 1.3.1.3 Flow Equalization -- Sedimentation -- Horizontal Flow -- Solid Contact Clarifiers -- 1.3.1.4 Flotation -- 1.3.1.5 Adsorption with Activated Carbon -- 1.3.1.6 Ozonation -- 1.3.2 Principles of Biological Treatment -- 1.3.3 Biological Treatment Approaches -- 1.3.3.1 Aerobic Treatment -- Oxidation Ponds -- Aeration Lagoons -- 1.3.3.2 Anaerobic Treatment -- Anaerobic Digestions -- Anaerobic Lagoons -- 1.3.3.3 Bioreactor -- 1.3.3.4 Activated Sludge -- 1.3.3.5 Biological Nutrient Removals -- Biological Nitrogen Removal -- Biological Phosphorus Removal -- 1.3.3.6 Phytoremediation -- 1.4 Strategy and Challenges for Wastewater Management -- 1.5 Conclusions -- References -- 2: Bioremediation of Hexavalent Chromium from Industrial Effluents -- 2.1 Introduction -- 2.2 Chromium Industrial Applications -- 2.3 Soil Chromium Transformations: Mobility and Bioavailability -- 2.4 The Phase of Chromium -- 2.5 Cr (IV) Specification -- 2.6 Oxidation/Reduction Reactions in Soil -- 2.7 Toxicity of Chromium -- 2.8 Evaluation and Chemical Processing of Chromium in Various Solid Wastes -- 2.9 Chromite Ore Processing Residue (COPR) -- 2.10 Leather Tannery Contaminated Soil.
2.11 Electroplating Sludge and Contaminated Soil -- 2.12 Metallurgical and Construction Waste Contaminates -- 2.13 Contamination from Waste from Mines -- 2.14 Pollution from Municipal Hazardous Waste and Polluted Soil -- 2.15 Biological Removal of Chromium in Various Industrial Waste Products -- 2.15.1 Chromite Trace Mining Ore -- 2.15.2 Leather Tannery Contained Soil -- 2.15.3 Polluted Soil and Sludge from Electroplating -- 2.15.4 Metallurgical and Construction Waste Contaminates -- 2.16 Conclusion -- References -- 3: Integration of Nanotechnologies for Sustainable Remediation of Environmental Pollutants -- 3.1 Introduction -- 3.2 Present Day Treatment Methods for the Ouster of Pollutants -- 3.3 Nanotechnology -- 3.3.1 Properties of Nanoparticles -- 3.4 Synthesis of Nanoparticles -- 3.4.1 Synthesis of Nanoparticles Utilizing Plants -- 3.4.2 Synthesis of Nanoparticles Utilizing Bacteria -- 3.4.3 Synthesis of Nanoparticles Utilizing Fungi and Yeast -- 3.4.4 Synthesis of Nanoparticles Utilizing Algae -- 3.4.5 Remediation Using Biogenic Polysaccharide -- 3.5 Nanobioremediation -- 3.6 Conclusion -- References -- 4: Arsenic Removal Using Nanotechnology -- 4.1 Introduction -- 4.2 As Toxicity -- 4.3 Acute Poisoning -- 4.4 Chronic Poisoning -- 4.5 Conventional Methods for As Removal -- 4.6 Oxidation -- 4.7 Coagulation-Flocculation -- 4.8 Membrane Technologies -- 4.9 Adsorption and Ion Exchange -- 4.10 Carbon Nanotubes -- 4.11 Titanium Based Nanoparticles -- 4.12 Iron Based Nanoparticles -- 4.13 Ceria Nanoparticles -- 4.14 Zirconium Based Nanoparticles -- 4.15 Yttrium Based Nanoparticles -- 4.16 Perlite Nanocomposites -- 4.17 Biochar Nanocomposite -- 4.18 Polymeric Nanocomposites -- 4.19 Conclusions and Future Perspectives -- References -- 5: Emerging Contaminants in Wastewater: Sources of Contamination, Toxicity, and Removal Approaches -- 5.1 Introduction.
5.2 Emerging Contaminants -- 5.2.1 Pesticides -- 5.2.2 Persistent Organic Pollutants (POPs) -- 5.2.3 Endocrine-Disrupting Chemicals (EDCs) -- 5.2.4 Pharmaceutical Personal Care Products (PPCPs) -- 5.2.5 Naturally Occurring Emerging Contaminants -- 5.2.6 Microplastic -- 5.3 Source of Contamination of Emerging Contaminants -- 5.3.1 Domestic and Hospital Effluents -- 5.3.2 Industrial Wastewater -- 5.3.3 Agriculture Runoff -- 5.4 Pollution and Toxicity of Emerging Contaminants -- 5.4.1 Adverse Impacts on Human Health and Biodiversity -- 5.4.2 Water Pollution -- 5.4.3 Soil Pollution -- 5.5 Removal Approaches -- 5.5.1 Physical Treatments -- 5.5.2 Chemical Treatment -- 5.5.3 Biological Treatments -- 5.5.3.1 Constructed Wetlands -- 5.5.3.2 Biological Trickling Filter -- 5.5.3.3 Biologically Activated Carbon -- 5.5.3.4 Biosorption -- 5.5.3.5 Membrane Bioreactor (MBR) -- 5.5.3.6 Phytoremediation -- 5.6 Conclusion -- References -- 6: Application of Biochar for Sustainable Development in Agriculture and Environmental Remediation -- 6.1 Introduction -- 6.2 Production of Biochar -- 6.3 Biochar and Microorganism -- 6.4 Application of Biochar -- 6.4.1 Increased Soil Fertility -- 6.4.2 Water Retention in Soil -- 6.4.3 Increased Crop Yield -- 6.4.4 Restoring the Soil Properties -- 6.4.4.1 Effects of Biochar on Soil Physical Properties -- Soil Structure -- 6.4.4.2 Porosity, Aggregate Stability, Soil Surface, Bulk Density, Penetration Resistance Porosity -- Soil Density -- Surface Area -- Soil Water -- 6.4.4.3 Liming Effect in Soil/Reduced Toxicity and pH -- 6.4.5 Improve Soil Organic Carbon (SOC) -- 6.4.6 Role of Biochar in Climate Change -- 6.4.6.1 N2O and CH4 Emissions -- 6.4.6.2 Carbon Sequestering -- 6.4.7 Bioenergy from Agricultural and Forestry Residues -- 6.5 Conclusion -- References -- 7: Life Cycle Analysis to Estimate Environmental Impact of the Food Industry.
7.1 Introduction -- 7.2 LCA in Food Industry -- 7.2.1 Goal Definition -- 7.2.2 Scope Definition -- 7.2.3 Life Cycle Inventory -- 7.2.4 Impact Assessment -- 7.2.5 Interpretation -- 7.3 LCA Studies on Food Products -- 7.3.1 LCA Approach -- 7.3.1.1 Product Approach -- Agri-Food Product -- Meat -- 7.3.1.2 Dietary Approach -- 7.4 Challenges in LCA Studies -- 7.4.1 Database and Its Quality -- 7.4.2 Consumer Requirement -- 7.4.3 Divergence of Interpretations -- 7.4.4 Impact Categories Selection -- 7.5 Discussion and Future Research Direction -- 7.6 Conclusion -- References -- 8: Food Wastes: Perceptions, Impacts and Management -- 8.1 Introduction -- 8.1.1 Food Waste/Loss Perception -- 8.1.2 Food Wastes Categorization -- 8.1.3 Quantification of Food Wastes -- 8.1.4 Impacts of Food Waste -- 8.1.4.1 Environmental Impact -- Carbon Footprint -- Water Footprint -- Nutrient Loss -- Land Use -- 8.1.4.2 Socioeconomic Impact of Food Waste -- 8.1.5 Effective Waste Management Options -- 8.1.6 Conclusion and Future Anticipations -- References -- 9: Hydrothermal Carbonization of Organic Fraction of Municipal Solid Waste: Advantage, Disadvantage, and Different Application... -- 9.1 Introduction -- 9.2 Introduction to Hydrothermal Carbonization (HTC) -- 9.3 Mechanism During Hydrothermal Carbonization -- 9.4 Effect of Different Process Matter -- 9.5 Advantages and Disadvantages of Hydrothermal Carbonization -- 9.6 Potential Applications of Hydrochar -- 9.7 Conclusion -- References -- 10: Pollutants Characterization and Toxicity Assessment of Pulp and Paper Industry Sludge for Safe Environmental Disposal -- 10.1 Introduction -- 10.2 Process of Pulp and Paper Making -- 10.3 Generation of Total Wastewater from Pulp and Industry -- 10.4 Characterization to Total Pollutants from Sludge -- 10.5 Toxicity Assessment -- 10.6 Management of Sludge after Secondary Treatment.
10.7 Future Prospective -- 10.8 Conclusion -- References -- 11: Use of Flue Gas as a Carbon Source for Algal Cultivation -- 11.1 Introduction -- 11.2 Greenhouse Gases -- 11.3 Greenhouse Gases Reduction -- 11.4 Microalgae Production -- 11.5 Flue Gases in Microalgae Cultivation -- 11.6 Factors Influencing CO2 Fixation from Flue Gas by Microalgae -- 11.6.1 Microalgae Strains -- 11.6.2 CO2 Concentration in Flue Gas -- 11.6.3 pH -- 11.6.4 NOx, SOx, and Particulate Materials -- 11.6.5 Temperature and Light -- 11.6.6 Mass Transfer in Bioreactors -- 11.6.7 Bioreactor Application in CO2 Fixation by Microalgae -- 11.6.8 CO2 Biofixation Metabolism -- 11.7 Bioproducts from Microalgal Biomass Grown with Flue Gas -- 11.7.1 Biofuels -- 11.7.2 Biopigments -- 11.7.3 Biopolymers -- 11.8 Conclusion -- References.
Titolo autorizzato: Emerging Treatment Technologies for Waste Management  Visualizza cluster
ISBN: 981-16-2015-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910495218603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui