Vai al contenuto principale della pagina
Autore: | Handel Michael <1949-> |
Titolo: | Subgroup decomposition in Out(Fn) / / Michael Handel, Lee Mosher |
Pubblicazione: | Providence, RI : , : American Mathematical Society, , [2020] |
Descrizione fisica: | 1 online resource (290 pages) |
Disciplina: | 511.3/26 |
Soggetto topico: | Manifolds and cell complexes {For complex manifolds, see 32Qxx} -- Low-dimensional topology -- Topological methods in group theory |
Group theory and generalizations -- Structure and classification of infinite or finite groups -- Free nonabelian groups | |
Group theory and generalizations -- Special aspects of infinite or finite groups -- Geometric group theory [See also 05C25, 20E08, 57Mxx] | |
Group theory and generalizations -- Special aspects of infinite or finite groups -- Automorphism groups of groups [See also 20E36] | |
Non-Abelian groups | |
Geometric group theory | |
Decomposition (Mathematics) | |
Automorphisms | |
Algebraic topology | |
Soggetto genere / forma: | Electronic books. |
Persona (resp. second.): | MosherLee <1957-> |
Note generali: | "March 2020, volume 264, number 1280 (third of 6 numbers)." |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Introduction to subgroup decomposition - Preliminaries : decomposing outer automorphisms -- Geometric EG strata and geometric laminations -- Vertex groups and vertex group systems -- Statements of the main results -- Preliminaries -- An outline of the relative Kolchin theorem -- IAn(Z/3) periodic conjugacy classes -- IAn(Z/3) periodic free factors -- Limit trees -- Carrying asymptotic data : proposition 3.4 -- Finding Nielsen pairs : proposition 3.7 -- The nonattracting subgroup system -- Nonattracted lines -- Ping-pong on geodesic lines -- Proof of theorem C -- A filling lemma. |
Titolo autorizzato: | Subgroup decomposition in Out(Fn) |
ISBN: | 1-4704-5802-0 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910480819403321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |