Vai al contenuto principale della pagina

The ambient metric [[electronic resource] /] / Charles Fefferman, C. Robin Graham



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Fefferman Charles <1949-> Visualizza persona
Titolo: The ambient metric [[electronic resource] /] / Charles Fefferman, C. Robin Graham Visualizza cluster
Pubblicazione: Princeton, : Princeton University Press, 2012
Edizione: Course Book
Descrizione fisica: 1 online resource (124 p.)
Disciplina: 516.3/7
Soggetto topico: Conformal geometry
Conformal invariants
Soggetto genere / forma: Electronic books.
Soggetto non controllato: Eistein metric
Fuchsian problems
Lorentz metric
Poincar metric
Poincar metrics
Ricci curvature
Riemannian geometry
Riemannian metrics
Taylor expansion
Weyl invariants
ambient curvature
ambient metric forms
ambient metric
conformal curvature tensors
conformal geometry
conformal infinity
conformal invariants
conformal manifold
flat manifolds
geodesic normal coordinates
infinite-order formal theory
jet isomorphism theorem
manifold
n+2 dimensions
parabolic invariant theory
power series
pseudo-Riemannian metric
scalar invariants
self-dual Einstein metric
theorem
Altri autori: GrahamC. Robin <1954->  
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Frontmatter -- Contents -- Chapter One. Introduction -- Chapter Two. Ambient Metrics -- Chapter Three. Formal Theory -- Chapter Four. Poincaré Metrics -- Chapter Five. Self-dual Poincaré Metrics -- Chapter Six. Conformal Curvature Tensors -- Chapter Seven. Conformally Flat and Conformally Einstein Spaces -- Chapter Eight. Jet Isomorphism -- Chapter Nine. Scalar Invariants -- Bibliography -- Index
Sommario/riassunto: This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient metric has an alternate incarnation as the Poincaré metric, a metric in n+1 dimensions having the conformal manifold as its conformal infinity. In this realization, the construction has played a central role in the AdS/CFT correspondence in physics. The existence and uniqueness of the ambient metric at the formal power series level is treated in detail. This includes the derivation of the ambient obstruction tensor and an explicit analysis of the special cases of conformally flat and conformally Einstein spaces. Poincaré metrics are introduced and shown to be equivalent to the ambient formulation. Self-dual Poincaré metrics in four dimensions are considered as a special case, leading to a formal power series proof of LeBrun's collar neighborhood theorem proved originally using twistor methods. Conformal curvature tensors are introduced and their fundamental properties are established. A jet isomorphism theorem is established for conformal geometry, resulting in a representation of the space of jets of conformal structures at a point in terms of conformal curvature tensors. The book concludes with a construction and characterization of scalar conformal invariants in terms of ambient curvature, applying results in parabolic invariant theory.
Titolo autorizzato: The ambient metric  Visualizza cluster
ISBN: 1-283-29095-2
9786613290953
1-4008-4058-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910461803903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Annals of mathematics studies ; ; no. 178.