Vai al contenuto principale della pagina

Adolescent Brain Cognitive Development Neurocognitive Prediction : First Challenge, ABCD-NP 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings / / edited by Kilian M. Pohl, Wesley K. Thompson, Ehsan Adeli, Marius George Linguraru



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Adolescent Brain Cognitive Development Neurocognitive Prediction : First Challenge, ABCD-NP 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings / / edited by Kilian M. Pohl, Wesley K. Thompson, Ehsan Adeli, Marius George Linguraru Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Edizione: 1st ed. 2019.
Descrizione fisica: 1 online resource (XI, 188 p. 57 illus., 49 illus. in color.)
Disciplina: 616.8047548
Soggetto topico: Computer vision
Machine learning
Computer science - Mathematics
Mathematical statistics
Data mining
Computer Vision
Machine Learning
Probability and Statistics in Computer Science
Data Mining and Knowledge Discovery
Persona (resp. second.): PohlKilian M
ThompsonWesley (Of University of California, San Diego)
AdeliEhsan
LinguraruMarius George
Note generali: Includes index.
Nota di contenuto: A Combined Deep Learning-Gradient Boosting Machine Framework for Fluid Intelligence Prediction -- Predicting Fluid Intelligence of Children using T1-weighted MR Images and a StackNet -- Deep Learning vs. Classical Machine Learning: A Comparison of Methods for Fluid Intelligence Prediction -- Surface-based Brain Morphometry for the Prediction of Fluid Intelligence in the Neurocognitive Prediction Challenge 2019 -- Prediction of Fluid Intelligence From T1-Weighted Magnetic Resonance Images -- Ensemble of SVM, Random-Forest and the BSWiMS Method to Predict and Describe Structural Associations with Fluid Intelligence Scores from T1-Weighed MRI -- Predicting intelligence based on cortical WM/GM contrast, cortical thickness and volumetry -- Predict Fluid Intelligence of Adolescent Using Ensemble Learning -- Predicting Fluid Intelligence in Adolescent Brain MRI Data: An Ensemble Approach -- Predicting Fluid intelligence from structural MRI using Random Forest regression -- Nu Support Vector Machine in Prediction of Fluid Intelligence Using MRI Data -- An AutoML Approach for the Prediction of Fluid Intelligence From MRI-Derived Features -- Predicting Fluid Intelligence from MRI images with Encoder-decoder Regularization -- ABCD Neurocognitive Prediction Challenge 2019: Predicting individual residual fluid intelligence scores from cortical grey matter morphology -- Ensemble Modeling of Neurocognitive Performance Using MRI-derived Brain Structure Volumes -- ABCD Neurocognitive Prediction Challenge 2019: Predicting individual fluid intelligence scores from structural MRI using probabilistic segmentation and kernel ridge regression -- Predicting fluid intelligence using anatomical measures within functionally defined brain networks -- Sex differences in predicting fluid intelligence of adolescent brain from T1-weighted MRIs -- Ensemble of 3D CNN regressors with data fusion for fluid intelligence prediction -- Adolescent fluid intelligence prediction from regional brain volumes and cortical curvatures using BlockPC-XGBoost -- Cortical and Subcortical Contributions to Predicting Intelligence using 3D ConvNets.
Sommario/riassunto: This book constitutes the refereed proceedings of the First Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction, ABCD-NP 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. 29 submissions were carefully reviewed and 24 of them were accepted. Some of the 24 submissions were merged and resulted in the 21 papers that are presented in this book. The papers explore methods for predicting fluid intelligence from T1-weighed MRI of 8669 children (age 9-10 years) recruited by the Adolescent Brain Cognitive Development Study (ABCD) study; the largest long-term study of brain development and child health in the United States to date.
Titolo autorizzato: Adolescent Brain Cognitive Development Neurocognitive Prediction  Visualizza cluster
ISBN: 3-030-31901-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910349275503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Image Processing, Computer Vision, Pattern Recognition, and Graphics ; ; 11791