Vai al contenuto principale della pagina
| Autore: |
Kappes André
|
| Titolo: |
Monodromy representations and Lyapunov exponents of origamis
|
| Pubblicazione: | KIT Scientific Publishing, 2011 |
| Descrizione fisica: | 1 online resource (VIII, 138 p. p.) |
| Soggetto non controllato: | Kontsevich-Zorich cocycle |
| Lyapunov exponent | |
| square-tiled surface | |
| Teichmüller curve | |
| variation of Hodge structures | |
| Veech group | |
| Sommario/riassunto: | Origamis are translation surfaces obtained by gluing finitely many unit squares and provide an easy access to Teichmüller curves. In particular, their monodromy represenation can be explicitely determined. A general principle for the decomposition of this represenation is exhibited and applied to examples. Closely connected to it is a dynamical cocycle on the Teichmüller curve. It is shown that its Lyapunov exponents, otherwise inaccessible, can be computed for a subrepresentation of rank two. |
| Titolo autorizzato: | Monodromy representations and Lyapunov exponents of origamis ![]() |
| ISBN: | 1000024418 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910346900703321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |