Vai al contenuto principale della pagina
| Autore: |
Godement Roger
|
| Titolo: |
Analysis III : Analytic and Differential Functions, Manifolds and Riemann Surfaces / / by Roger Godement
|
| Pubblicazione: | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 |
| Edizione: | 1st ed. 2015. |
| Descrizione fisica: | 1 online resource (VII, 321 p. 25 illus.) |
| Disciplina: | 515.8 |
| Soggetto topico: | Functions of real variables |
| Real Functions | |
| Note generali: | Bibliographic Level Mode of Issuance: Monograph |
| Nota di contenuto: | VIII Cauchy Theory -- IX Multivariate Differential and Integral Calculus -- X The Riemann Surface of an Algebraic Function. |
| Sommario/riassunto: | Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques. Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular functions and its modern version using the structure of the Lie algebra of SL(2,R). |
| Titolo autorizzato: | Analysis III ![]() |
| ISBN: | 3-319-16053-2 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910299767503321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |