Vai al contenuto principale della pagina

Compressed sensing & sparse filtering / / Avishy Y. Carmi, Lyudmila S. Mihaylova, Simon J. Godsill, editors



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Compressed sensing & sparse filtering / / Avishy Y. Carmi, Lyudmila S. Mihaylova, Simon J. Godsill, editors Visualizza cluster
Pubblicazione: Heidelberg, Germany : , : Springer, , 2014
Edizione: 1st ed. 2014.
Descrizione fisica: 1 online resource (xii, 502 pages) : illustrations (some color)
Disciplina: 621.382
621.3822
Soggetto topico: Signal processing - Digital techniques
Persona (resp. second.): CarmiAvishy Y.
MihaylovaLyudmila
GodsillSimon J. <1965->
Note generali: "ISSN: 1860-4862."
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Introduction to Compressed Sensing and Sparse Filtering -- The Geometry of Compressed Sensing -- Sparse Signal Recovery with Exponential-Family Noise -- Nuclear Norm Optimization and its Application to Observation Model Specification -- Nonnegative Tensor Decomposition -- Sub-Nyquist Sampling and Compressed Sensing in Cognitive Radio Networks -- Sparse Nonlinear MIMO Filtering and Identification -- Optimization Viewpoint on Kalman Smoothing with Applications to Robust and Sparse Estimation -- Compressive System Identification -- Distributed Approximation and Tracking using Selective Gossip -- Recursive Reconstruction of Sparse Signal Sequences -- Estimation of Time-Varying Sparse Signals in Sensor Networks -- Sparsity and Compressed Sensing in Mono-static and Multi-static Radar Imaging -- Structured Sparse Bayesian Modelling for Audio Restoration -- Sparse Representations for Speech Recognition.
Sommario/riassunto: This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary.  Apart from compressed sensing this book contains other related approaches. Each methodology has its own formalities for dealing with such problems. As an example, in the Bayesian approach, sparseness promoting priors such as Laplace and Cauchy are normally used for penalising improbable model variables, thus promoting low complexity solutions. Compressed sensing techniques and homotopy-type solutions, such as the LASSO, utilise l1-norm penalties for obtaining sparse solutions using fewer observations than conventionally needed. The book emphasizes on the role of sparsity as a machinery for promoting low complexity representations and likewise its connections to variable selection and dimensionality reduction in various engineering problems.  This book is intended for researchers, academics and practitioners with interest in various aspects and applications of sparse signal processing.  .
Titolo autorizzato: Compressed Sensing & Sparse Filtering  Visualizza cluster
ISBN: 3-642-38398-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910299717703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Signals and communication technology.