Vai al contenuto principale della pagina

Conformal Geometry of Surfaces in S4 and Quaternions / / by Francis E. Burstall, Dirk Ferus, Katrin Leschke, Franz Pedit, Ulrich Pinkall



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Burstall Francis E Visualizza persona
Titolo: Conformal Geometry of Surfaces in S4 and Quaternions / / by Francis E. Burstall, Dirk Ferus, Katrin Leschke, Franz Pedit, Ulrich Pinkall Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2002
Edizione: 1st ed. 2002.
Descrizione fisica: 1 online resource (VIII, 96 p.)
Disciplina: 516.3/6
510 s
Soggetto topico: Differential geometry
Differential Geometry
Persona (resp. second.): FerusDirk
LeschkeKatrin
PeditFranz
PinkallUlrich
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di contenuto: Quaternions -- Linear algebra over the quaternions -- Projective spaces -- Vector bundles -- The mean curvature sphere -- Willmore Surfaces -- Metric and affine conformal geometry -- Twistor projections -- Bäcklund transforms of Willmore surfaces -- Willmore surfaces in S3 -- Spherical Willmore surfaces in HP1 -- Darboux transforms -- Appendix: The bundle L. Holomorphicity and the Ejiri theorem.
Sommario/riassunto: The conformal geometry of surfaces recently developed by the authors leads to a unified understanding of algebraic curve theory and the geometry of surfaces on the basis of a quaternionic-valued function theory. The book offers an elementary introduction to the subject but takes the reader to rather advanced topics. Willmore surfaces in the foursphere, their Bäcklund and Darboux transforms are covered, and a new proof of the classification of Willmore spheres is given.
Titolo autorizzato: Conformal geometry of surfaces in S4 and quaternions  Visualizza cluster
ISBN: 3-540-45301-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910144596103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 0075-8434 ; ; 1772