Autore: |
Koepf, Wolfram
|
Titolo: |
Hypergeometric summation : an algorithmic approach to summation and special function identities / Wolfram Koepf
|
Pubblicazione: |
London, : Springer, 2014 |
Titolo uniforme: |
Hypergeometric Summation
|
Edizione: |
2. ed |
Descrizione fisica: |
XVII, 279 p. ; 24 cm |
Soggetto topico: |
33F10 - Symbolic computation of special functions (Gosper and Zeilberger algorithms, etc.) [MSC 2020] |
|
68W30 - Symbolic computation and algebraic computation [MSC 2020] |
|
33C45 - Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) [MSC 2020] |
|
05A19 - Combinatorial identities, bijective combinatorics [MSC 2020] |
|
13P05 - Computational aspects and applications of commutative rings [MSC 2020] |
|
33D15 - Basic hypergeometric functions in one variable, ${}_r\phi_s$ [MSC 2020] |
|
33C20 - Generalized hypergeometric series, ${}_pF_q$ [MSC 2020] |
|
33D45 - Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.) [MSC 2020] |
|
05A30 - $q$-calculus and related topics [MSC 2020] |
|
11B65 - Binomial coefficients; factorials; $q$-identities [MSC 2020] |
Soggetto non controllato: |
Algorithmic Summation |
|
Antidifference |
|
Basic Hypergeometric Series |
|
Combinatorics |
|
Differential Equation |
|
Fasenmyer Algorithm |
|
Generating Function |
|
Gosper Algorithm |
|
Hypergeometric series |
|
Non-commutative Factorization |
|
Operator Equation |
|
Ordinary differential equations |
|
Petkovsek Algorithm |
|
Recurrence Equation |
|
Rodrigues Formulas |
|
Van Hoeij Algorithm |
|
Zeilberger Algorithm |
Titolo autorizzato: |
Hypergeometric summation |
Formato: |
Materiale a stampa |
Livello bibliografico |
Monografia |
Lingua di pubblicazione: |
Inglese |
Record Nr.: | VAN0102576 |
Lo trovi qui: | Univ. Vanvitelli |
Localizzazioni e accesso elettronico |
http://dx.doi.org/10.1007/978-1-4471-6464-7 |
Opac: |
Controlla la disponibilità qui |