Vai al contenuto principale della pagina
Autore: | Burdzy Krzysztof |
Titolo: | Brownian Motion and its Applications to Mathematical Analysis [[electronic resource] ] : École d'Été de Probabilités de Saint-Flour XLIII – 2013 / / by Krzysztof Burdzy |
Pubblicazione: | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
Edizione: | 1st ed. 2014. |
Descrizione fisica: | 1 online resource (XII, 137 p. 16 illus., 4 illus. in color.) |
Disciplina: | 530.475 |
Soggetto topico: | Probabilities |
Partial differential equations | |
Potential theory (Mathematics) | |
Probability Theory and Stochastic Processes | |
Partial Differential Equations | |
Potential Theory | |
Classificazione: | MAT 606f |
MAT 607f | |
SI 850 | |
60J6560H3060G17 | |
Note generali: | Bibliographic Level Mode of Issuance: Monograph |
Nota di bibliografia: | Includes bibliographical references (pages 133-137). |
Nota di contenuto: | 1. Brownian motion -- 2. Probabilistic proofs of classical theorems -- 3. Overview of the "hot spots" problem -- 4. Neumann eigenfunctions and eigenvalues -- 5. Synchronous and mirror couplings -- 6. Parabolic boundary Harnack principle -- 7. Scaling coupling -- 8. Nodal lines -- 9. Neumann heat kernel monotonicity -- 10. Reflected Brownian motion in time dependent domains. |
Sommario/riassunto: | These lecture notes provide an introduction to the applications of Brownian motion to analysis and, more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, such as flower pollen in water, to stock market fluctuations. It is also a purely abstract mathematical tool which can be used to prove theorems in "deterministic" fields of mathematics. The notes include a brief review of Brownian motion and a section on probabilistic proofs of classical theorems in analysis. The bulk of the notes are devoted to recent (post-1990) applications of stochastic analysis to Neumann eigenfunctions, Neumann heat kernel and the heat equation in time-dependent domains. |
Titolo autorizzato: | Brownian motion and its applications to mathematical analysis |
ISBN: | 3-319-04394-3 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 996205178603316 |
Lo trovi qui: | Univ. di Salerno |
Opac: | Controlla la disponibilità qui |