Vai al contenuto principale della pagina
| Autore: |
Kashif Rao
|
| Titolo: |
Hybrid Communication Systems for Future 6G and Beyond : Visible Light Communication and Radio over Fiber Technology
|
| Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| ©2025 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (160 pages) |
| Disciplina: | 621.382/7 |
| Soggetto topico: | Optical communications |
| FiWi access networks | |
| 6G mobile communication systems | |
| Nota di contenuto: | Cover -- Title Page -- Copyright -- Contents -- About the Author -- Acknowledgments -- Introduction -- Chapter 1 Introduction -- 1.1 Overview -- 1.2 Radio Frequency Communication -- 1.2.1 Limitations for Future RF Communication -- 1.2.1.1 Spectrum Congestion -- 1.2.1.2 Limited Bandwidth -- 1.2.1.3 Line‐of‐Sight Requirements -- 1.2.1.4 Signal Attenuation and Interference -- 1.2.1.5 Security Concerns -- 1.2.1.6 Energy Efficiency -- 1.3 Optical Communication -- 1.3.1 Future Opportunities for Optical Communication -- 1.3.1.1 High Data Rates -- 1.3.1.2 Low Latency -- 1.3.1.3 Large Bandwidth -- 1.3.1.4 Immunity to Electromagnetic Interference -- 1.3.1.5 Secure Communication -- 1.3.1.6 Energy Efficiency -- 1.4 Hybrid System -- 1.4.1 Scope of Hybrid Communication -- 1.4.1.1 Seamless Connectivity -- 1.4.1.2 Enhanced Reliability -- 1.4.1.3 Improved Performance -- 1.4.1.4 Flexibility and Scalability -- 1.4.1.5 Multimodal Communication -- 1.4.1.6 Advanced Applications -- 1.5 History of Visible Light Communication -- 1.5.1 Ancient Signaling Methods -- 1.5.2 Optical Telegraphs -- 1.5.3 Alexander Graham Bell's Photophone (1880) -- 1.5.4 Invention of Light Emitting Diodes (LEDs) -- 1.5.5 Early Research into VLC (1990s-2000s) -- 1.5.6 Harald Haas and Li‐Fi (2011) -- 1.5.7 Technological Advancements -- 1.5.8 Standardization Efforts -- 1.5.9 Integration with Modern Communication Systems -- 1.5.10 Current Trends and Future Prospects -- 1.6 Visible Light Communication -- 1.6.1 Problem 1 -- 1.6.1.1 Current Industry Trend -- 1.6.1.2 Possible Solution -- 1.6.2 Problem 2 -- 1.6.2.1 Current Industry Trend -- 1.6.2.2 Possible Solution -- 1.6.3 Opti Wave System Tool -- References -- Chapter 2 Visible Light Communication -- 2.1 Overview -- 2.2 Background -- 2.3 VLC for Indoor Communication -- 2.4 Opportunities and Limitations -- 2.4.1 Applications. |
| 2.5 Modulation Techniques -- 2.5.1 On-Off Keying -- 2.5.2 Pulse Width Modulation -- 2.5.3 Pulse Position Modulation (PPM) -- 2.5.4 Orthogonal Frequency Division Multiplexing -- 2.5.5 Color Shift Keying -- 2.5.6 Optical Asymmetric Modulation -- 2.5.7 Discrete Multi‐Tone (DMT) -- 2.6 Light Fidelity and Wireless Fidelity Comparison -- 2.7 VLC Transmitter and Receiver -- 2.7.1 VLC Transmitter -- 2.7.2 VLC Receiver -- References -- Chapter 3 Radio over Fiber System -- 3.1 Overview -- 3.1.1 Direct Modulation -- 3.1.2 External Modulation -- 3.2 Radio over Fiber Link Configuration -- 3.2.1 Radio Frequency over Fiber -- 3.2.2 Intermediate Frequency over Fiber -- 3.2.3 Baseband over Fiber -- 3.2.4 Millimeter‐Wave Signal Generation -- 3.2.5 Applications -- 3.2.5.1 Satellite Communication -- 3.2.5.2 Cellular Networks -- 3.2.5.3 Transportation and Vehicles -- 3.2.5.4 Visible Light Communication -- 3.3 Radio over Fiber System‐Level Analysis -- 3.3.1 Encoding Formats -- 3.3.2 PIN and APD Photodiodes -- 3.4 Simulation -- 3.4.1 Result -- 3.5 Future Multifunctional RoF Home Network -- 3.5.1 Fiber to the Home (FTTH) -- 3.5.2 Multifrequency RoF System Design -- References -- Chapter 4 Digital Coherent Integration with Radio over Fiber -- 4.1 Digital Coherent System Analysis -- 4.1.1 DP‐QPSK Transmitter -- 4.1.2 Digital Coherent Optical Receiver -- 4.1.3 Optical Integration Technology -- 4.1.3.1 PLC Technology -- 4.1.3.2 Optical Semiconductor -- 4.1.3.3 High‐Speed Electronic Devices -- 4.1.4 Digital Signal Processing in a Coherent Receiver -- 4.2 Software Implementation -- 4.3 Digital Coherent RoF System Analysis -- 4.3.1 Proposed System Design and Analysis -- 4.3.2 Simulation -- References -- Chapter 5 Proposed Hybrid System for Indoor VLC -- 5.1 Overview -- 5.1.1 Backhaul Connection -- 5.1.2 Uplink Connectivity -- 5.2 Proposed System Design -- 5.2.1 OFDM Coherent RoF. | |
| 5.2.1.1 Architecture Design -- 5.2.2 Modeling in OptiSystem 15 -- 5.3 Proposed Auto Channel Switching Unit (ACSU) -- 5.3.1 Modeling of the Auto Channel Switching Unit (ACSU) -- 5.4 Feasibility Analysis -- 5.4.1 Technical Feasibility -- 5.4.2 Cost‐Benefits Analysis -- References -- Chapter 6 Proposed Indoor Hybrid System Modeling -- 6.1 Modeling of Indoor Hybrid System for VLC -- 6.2 VLC and RoF Indoor Downloading -- 6.3 Wi‐Fi and RoF for Indoor Purposes -- Chapter 7 Conclusion and Future Work -- 7.1 Conclusion -- 7.2 Future Work -- 7.3 Applications of VLC in 6G and Above Communication -- 7.3.1 High‐Speed Data Transfer -- 7.3.1.1 High Bandwidth -- 7.3.1.2 Spectral Efficiency -- 7.3.1.3 Short‐Range Communication -- 7.3.1.4 Low Latency -- 7.3.1.5 Integration with Existing Infrastructure -- 7.3.1.6 Security and Privacy -- 7.3.1.7 Complementary to RF Technologies -- 7.3.2 Indoor Localization and Navigation -- 7.3.2.1 Precise Positioning -- 7.3.2.2 Multilayered Positioning -- 7.3.2.3 Low Latency -- 7.3.2.4 High‐Density Deployment -- 7.3.2.5 Complementary to GPS -- 7.3.2.6 Integration with Smart Lighting -- 7.3.2.7 Privacy and Security -- 7.3.3 Augmented Reality (AR) and Virtual Reality (VR) -- 7.3.3.1 Low Latency Communication -- 7.3.3.2 High Bandwidth -- 7.3.3.3 Indoor Localization and Positioning -- 7.3.3.4 Interactive Projection Mapping -- 7.3.3.5 Gesture Recognition -- 7.3.3.6 Privacy and Security -- 7.3.3.7 Multiuser Collaboration -- 7.3.4 Smart Infrastructure and Internet of Things (IoT) -- 7.3.4.1 Smart Lighting Systems -- 7.3.4.2 Indoor Positioning and Navigation -- 7.3.4.3 Environmental Monitoring -- 7.3.4.4 Smart Retail and Hospitality -- 7.3.4.5 Smart Transportation -- 7.3.4.6 Industrial Automation -- 7.3.4.7 Energy Harvesting -- 7.3.5 Telecommunication/Wireless -- 7.3.5.1 Indoor Wireless Networking -- 7.3.5.2 Li‐Fi. | |
| 7.3.5.3 Last‐Mile Connectivity -- 7.3.5.4 Secure Communications -- 7.3.5.5 Smart Cities -- 7.3.5.6 Augmented Reality (AR) and Location‐Based Services -- 7.3.5.7 Vehicle‐to‐Infrastructure (V2I) Communication -- Chapter 8 The Role of AI and Machine Learning in 6G -- 8.1 Overview of AI and ML Concepts -- 8.1.1 Key AI and ML Concepts -- 8.2 Evolution of AI in Telecommunications -- 8.2.1 Early Adoption (1980s-1990s) -- 8.2.2 Growth Phase (2000s) -- 8.2.3 Modern Era (2010s) -- 8.2.4 Current Trends (2020s) -- 8.2.5 Future Directions (2030s and beyond) -- 8.3 Why AI and ML are Critical for 6G -- 8.4 Applications of AI and ML in Wireless Networks -- 8.4.1 Network Management and Optimization -- 8.4.2 Enhanced User Experience -- 8.4.3 Security and Fraud Detection -- 8.4.4 Predictive Maintenance and Fault Management -- 8.4.5 Advanced Communication Techniques -- 8.4.6 Edge Computing and IoT -- 8.5 6G and Visible Light Communication (VLC) -- 8.5.1 Ultrahigh‐Speed Data Transmission -- 8.5.2 Enhanced Indoor Localization and Positioning -- 8.5.3 Secure and Resilient Communication -- 8.5.4 Energy‐Efficient Networking -- 8.5.5 Overcoming RF Limitations and Interference -- Chapter 9 Future Research Directions for Visible Light Communication (VLC) in 6G Networks -- 9.1 VLC with Terahertz -- 9.1.1 Research Focus: Investigate Seamless Integration of VLC with Terahertz (THz) Communication Technologies -- 9.1.1.1 Complementary Strengths -- 9.1.1.2 Applications -- 9.1.1.3 Research Directions -- 9.2 Enhanced Modulation and Coding Schemes -- 9.2.1 Research Focus: Develop Advanced Modulation and Coding Techniques Tailored for VLC in 6G Networks -- 9.2.1.1 Key Areas of Research -- 9.3 Hybrid VLC‐RF Networks -- 9.3.1 Research Focus: Explore Hybrid Visible Light Communication (VLC) and Radio Frequency (RF) Network Architectures to Enhance Both Coverage and Reliability. | |
| 9.3.1.1 Key Points -- 9.3.1.2 Challenges -- 9.3.1.3 Potential Solutions and Approaches -- 9.3.1.4 Collaborative Communication Strategies -- 9.4 Massive MIMO and Beamforming Techniques -- 9.4.1 Research Focus: Investigate the Integration of Massive Multiple‐Input Multiple‐Output (MIMO) and Beamforming Techniques Within Visible Light Communication (VLC)‐Enabled 6G Networks -- 9.4.1.1 Key Points -- 9.4.1.2 Challenges -- 9.4.1.3 Potential Solutions and Approaches -- 9.5 Network Slicing and Service Differentiation -- 9.5.1 Research Focus: Explore Network Slicing and Service Differentiation Mechanisms Tailored for Visible Light Communication (VLC) Networks Within the Context of 6G -- 9.5.1.1 Key Points -- 9.5.1.2 Challenges -- 9.5.1.3 Potential Solutions and Approaches -- 9.5.1.4 Application Scenarios -- 9.6 Energy‐Efficient VLC Systems -- 9.6.1 Research Focus: Develop Energy‐Efficient Visible Light Communication (VLC) Systems Tailored for Sustainable 6G Networks -- 9.6.1.1 Key Points -- 9.6.1.2 Challenges -- 9.6.1.3 Potential Solutions and Approaches -- 9.6.1.4 Application Scenarios -- 9.7 Security and Privacy Enhancements -- 9.7.1 Research Focus: Investigate Advanced Security and Privacy Mechanisms Specifically Designed for Visible Light Communication (VLC) in 6G Networks -- 9.7.1.1 Key Points -- 9.7.1.2 Challenges -- 9.7.1.3 Potential Solutions and Approaches -- 9.7.1.4 Application Scenarios -- Index -- EULA. | |
| Sommario/riassunto: | Comprehensive guide to hybrid communication systems using visible light communication, radio over fiber, and auto channel switching technologies Hybrid Communication Systems for Future 6G and Beyond explores the future of wireless communication and discusses how we can create more efficient and reliable ways to communicate by unlocking the potential of three specific technologies: visible light communication (VLC), radio over fiber (RoF) technology, and auto channel switching. This book begins by exploring the potential of VLC technology, which is currently considered the best alternative to wireless communication. It then moves on to describe how RoF technology can provide a powerful backhaul solution for VLC. Later chapters cover auto channel switching and how it can facilitate data traffic sharing between WiFi and LiFi technologies. Case studies of successful hybrid communication system implementations are included throughout the text to showcase real-world applications and aid in reader comprehension. Written by a highly qualified author with experience in both academia and industry, Hybrid Communication Systems for Future 6G and Beyond includes information on: * The evolution, advantages, and disadvantages of hybrid systems, as well as their current limitations and potential solutions to these limitations * RoF modulation techniques, including direct and external modulation, and RoF configuration, including intermediate frequency over fiber, baseband over fiber, and millimeter-wave signal generation * RoF system level analysis, covering encoding formats, PIN and APD photodiodes, and various experiments and simulations * Hybrid communication technology that incorporates wireless Wi-Fi and Visible Light Communication (VLC) such as Li-Fi, to support the upcoming 6G and beyond high-speed communication networks Hybrid Communication Systems for Future 6G and Beyond is an invaluable resource for students, researchers, and professionals in the fields of telecommunications and electronic networking who are interested in designing and implementing hybrid communication systems. |
| Titolo autorizzato: | Hybrid Communication Systems for Future 6G and Beyond ![]() |
| ISBN: | 9781394230310 |
| 1394230311 | |
| 9781394230303 | |
| 1394230303 | |
| 9781394230297 | |
| 139423029X | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911020332703321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |