Vai al contenuto principale della pagina

Discrete Stochastic Processes : Tools for Machine Learning and Data Science / / by Nicolas Privault



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Privault Nicolas Visualizza persona
Titolo: Discrete Stochastic Processes : Tools for Machine Learning and Data Science / / by Nicolas Privault Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Edizione: 1st ed. 2024.
Descrizione fisica: 1 online resource (294 pages)
Disciplina: 006.310727
Soggetto topico: Stochastic processes
Computer science - Mathematics
Stochastic Processes
Mathematical Applications in Computer Science
Nota di contenuto: - 1. A Summary of Markov Chains -- 2. Phase-Type Distributions -- 3. Synchronizing Automata -- 4. Random Walks and Recurrence -- 5. Cookie-Excited Random Walks -- 6. Convergence to Equilibrium -- 7. The Ising Model -- 8. Search Engines -- 9. Hidden Markov Model -- 10. Markov Decision Processes.
Sommario/riassunto: This text presents selected applications of discrete-time stochastic processes that involve random interactions and algorithms, and revolve around the Markov property. It covers recurrence properties of (excited) random walks, convergence and mixing of Markov chains, distribution modeling using phase-type distributions, applications to search engines and probabilistic automata, and an introduction to the Ising model used in statistical physics. Applications to data science are also considered via hidden Markov models and Markov decision processes. A total of 32 exercises and 17 longer problems are provided with detailed solutions and cover various topics of interest, including statistical learning.
Titolo autorizzato: Discrete Stochastic Processes  Visualizza cluster
ISBN: 3-031-65820-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910896193803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Springer Undergraduate Mathematics Series, . 2197-4144