Vai al contenuto principale della pagina
Autore: | Lawson Andrew (Andrew B.) |
Titolo: | Disease mapping with WinBUGS and MLwiN / / Andrew B. Lawson, William J. Browne, Carmen L. Vidal Rodeiro |
Pubblicazione: | Chichester, West Sussex, England ; ; Hoboken, NJ, : J. Wiley, c2003 |
Descrizione fisica: | 1 online resource (293 p.) |
Disciplina: | 615.4/2/0727 |
Soggetto topico: | Medical mapping |
Medical geography - Maps - Data processing | |
Epidemiology - Statistical methods | |
Epidemiology - Data processing | |
Public health surveillance | |
Altri autori: | BrowneWilliam J <1972-> (William John) Vidal RodeiroCarmen L |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references (p. 267-273) and index. |
Nota di contenuto: | Disease Mapping with WinBUGS and MLwiN; Contents; Preface; Notation; 0.1 Standard notation for multilevel modelling; 0.2 Spatial multiple-membership models and the MMMC notation; 0.3 Standard notation for WinBUGS models; 1 Disease mapping basics; 1.1 Disease mapping and map reconstruction; 1.2 Disease map restoration; 2 Bayesian hierarchical modelling; 2.1 Likelihood and posterior distributions; 2.2 Hierarchical models; 2.3 Posterior inference; 2.4 Markov chain Monte Carlo methods; 2.5 Metropolis and Metropolis-Hastings algorithms; 2.6 Residuals and goodness of fit; 3 Multilevel modelling |
3.1 Continuous response models3.2 Estimation procedures for multilevel models; 3.3 Poisson response models; 3.4 Incorporating spatial information; 3.5 Discussion; 4 WinBUGS basics; 4.1 About WinBUGS; 4.2 Start using WinBUGS; 4.3 Specification of the model; 4.4 Model fitting; 4.5 Scripts; 4.6 Checking convergence; 4.7 Spatial modelling: GeoBUGS; 4.8 Conclusions; 5 MLwiN basics; 5.1 About MLwiN; 5.2 Getting started; 5.3 Fitting statistical models; 5.4 MCMC estimation in MLwiN; 5.5 Spatial modelling; 5.6 Conclusions; 6 Relative risk estimation; 6.1 Relative risk estimation using WinBUGS | |
6.2 Spatial prediction6.3 An analysis of the Ohio dataset using MLwiN; 7 Focused clustering: the analysis of putative health hazards; 7.1 Introduction; 7.2 Study design; 7.3 Problems of inference; 7.4 Modelling the hazard exposure risk; 7.5 Models for count data; 7.6 Bayesian models; 7.7 Focused clustering in WinBUGS; 7.8 Focused clustering in MLwiN; 8 Ecological analysis; 8.1 Introduction; 8.2 Statistical models; 8.3 WinBUGS analyses of ecological datasets; 8.4 MLwiN analyses of ecological datasets; 9 Spatially-correlated survival analysis; 9.1 Survival analysis in WinBUGS | |
9.2 Survival analysis in MLwiN10 Epilogue; Appendix 1: WinBUGS code for focused clustering models; A.1 Falkirk example; A.2 Ohio example; Appendix 2: S-Plus function for conversion to GeoBUGS format; Bibliography; Index | |
Sommario/riassunto: | Disease mapping involves the analysis of geo-referenced disease incidence data and has many applications, for example within resource allocation, cluster alarm analysis, and ecological studies. There is a real need amongst public health workers for simpler and more efficient tools for the analysis of geo-referenced disease incidence data. Bayesian and multilevel methods provide the required efficiency, and with the emergence of software packages - such as WinBUGS and MLwiN - are now easy to implement in practice.Provides an introduction to Bayesian and multilevel modelling in disease m |
Titolo autorizzato: | Disease mapping with WinBUGS and MLwiN |
ISBN: | 1-280-27039-X |
9786610270392 | |
0-470-34164-5 | |
0-470-85605-X | |
0-470-85606-8 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910877817503321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |