Vai al contenuto principale della pagina

Simultaneous localization and mapping [[electronic resource] ] : exactly sparse information filters / / Zhan Wang, Shoudong Huang, Gamini Dissanayake



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Wang Zhan Visualizza persona
Titolo: Simultaneous localization and mapping [[electronic resource] ] : exactly sparse information filters / / Zhan Wang, Shoudong Huang, Gamini Dissanayake Visualizza cluster
Pubblicazione: Singapore ; ; Hackensack, N.J., : World Scientific, c2011
Descrizione fisica: 1 online resource (208 p.)
Disciplina: 629.892637
Soggetto topico: Mobile robots
Robots - Control systems
Sparse matrices
Robotics
Mappings (Mathematics)
Altri autori: HuangShoudong <1969->  
DissanayakeGamini  
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references (p. 180-194).
Nota di contenuto: Contents; Preface; Acknowledgments; Chapter 1 Introduction; 1.1 The SLAM Problem and Its Applications; 1.1.1 Description of the SLAM Problem; 1.1.2 Applications of SLAM; 1.2 Summary of SLAM Approaches; 1.2.1 EKF/EIF based SLAM Approaches; 1.2.2 Other SLAM Approaches; 1.3 Key Properties of SLAM; 1.3.1 Observability; 1.3.2 EKF SLAM Convergence; 1.3.3 EKF SLAM Consistency; 1.4 Motivation; 1.5 Book Overview; Chapter 2 Sparse Information Filters in SLAM; 2.1 Information Matrix in the Full SLAM Formulation; 2.2 Information Matrix in the Conventional EIF SLAM Formulation
2.3 Meaning of Zero Off-diagonal Elements in Information Matrix2.4 Conditions for Achieving Exact Sparseness; 2.5 Strategies for Achieving Exact Sparseness; 2.5.1 Decoupling Localization and Mapping; 2.5.2 Using Local Submaps; 2.5.3 Combining Decoupling and Submaps; 2.6 Important Practical Issues in EIF SLAM; 2.7 Summary; Chapter 3 Decoupling Localization and Mapping; 3.1 The D-SLAM Algorithm; 3.1.1 Extracting Map Information from Observations; 3.1.2 Key Idea of D-SLAM; 3.1.3 Mapping; 3.1.4 Localization; 3.2 Structure of the Information Matrix in D-SLAM
3.3 Efficient State and Covariance Recovery3.3.1 Recovery Using the Preconditioned Conjugated Gradient (PCG) Method; 3.3.2 Recovery Using Complete Cholesky Factorization; 3.4 Implementation Issues; 3.4.1 Admissible Measurements; 3.4.2 Data Association; 3.5 Computer Simulations; 3.6 Experimental Evaluation; 3.6.1 Experiment in a Small Environment; 3.6.2 Experiment Using the Victoria Park Dataset; 3.7 Computational Complexity; 3.7.1 Storage; 3.7.2 Localization; 3.7.3 Mapping; 3.7.4 State and Covariance Recovery; 3.8 Consistency of D-SLAM; 3.9 Bibliographical Remarks; 3.10 Summary
Chapter 4 D-SLAM Local Map Joining Filter4.1 Structure of D-SLAM Local Map Joining Filter; 4.1.1 State Vectors; 4.1.2 Relative Information Relating Feature Locations; 4.1.3 Combining Local Maps Using Relative Information; 4.2 Obtaining Relative Location Information in Local Maps; 4.2.1 Generating a Local Map; 4.2.2 Obtaining Relative Location Information in the Local Map; 4.3 Global Map Update; 4.3.1 Measurement Model; 4.3.2 Updating the Global Map; 4.3.3 Sparse Information Matrix; 4.4 Implementation Issues; 4.4.1 Robot Localization; 4.4.2 Data Association; 4.4.3 State and Covariance Recovery
4.4.4 When to Start a New Local Map4.5 Computational Complexity; 4.5.1 Storage; 4.5.2 Local Map Construction; 4.5.3 Global Map Update; 4.5.4 Rescheduling the Computational Effort; 4.6 Computer Simulations; 4.6.1 Simulation in a Small Area; 4.6.2 Simulation in a Large Area; 4.7 Experimental Evaluation; 4.8 Bibliographical Remarks; 4.9 Summary; Chapter 5 Sparse Local Submap Joining Filter; 5.1 Structure of Sparse Local Submap Joining Filter; 5.1.1 Input to SLSJF - Local Maps; 5.1.2 Output of SLSJF - One Global Map; 5.2 Fusing Local Maps into the Global Map
5.2.1 Adding XG(k+1)s into the Global Map
Sommario/riassunto: Simultaneous localization and mapping (SLAM) is a process where an autonomous vehicle builds a map of an unknown environment while concurrently generating an estimate for its location. This book is concerned with computationally efficient solutions to the large scale SLAM problems using exactly sparse Extended Information Filters (EIF). The invaluable book also provides a comprehensive theoretical analysis of the properties of the information matrix in EIF-based algorithms for SLAM. Three exactly sparse information filters for SLAM are described in detail, together with two efficient and exact methods for recovering the state vector and the covariance matrix. Proposed algorithms are extensively evaluated both in simulation and through experiments.
Titolo autorizzato: Simultaneous localization and mapping  Visualizza cluster
ISBN: 1-283-43379-6
9786613433794
981-4350-32-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910788963203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: New frontiers in robotics ; ; v. 3.