Vai al contenuto principale della pagina
Autore: | Kane Richard M. <1944-> |
Titolo: | Operations in connective K-theory / / Richard M. Kane |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , [1981] |
©1981 | |
Descrizione fisica: | 1 online resource (110 p.) |
Disciplina: | 510 s |
514/.23 | |
Soggetto topico: | K-theory |
Steenrod algebra | |
Homotopy groups | |
Note generali: | "Volume 34, number 254 (end of volume)." |
Nota di bibliografia: | Bibliography: pages 101-102. |
Nota di contenuto: | ""Table of Contents""; ""Introduction""; ""Chapter I: Main Results""; ""1. K and BP operations""; ""2. Operations in connective K-Theory""; ""3. Steenrod Modules""; ""4. Construction of Cohomology Operations""; ""Chapter II: The Spectra {K(n)}""; ""5. The spectra {K(n)}""; ""6. The homology and cohomology of K(n)""; ""7. Proof of Propositions 6:14 and 6:16""; ""8. Proof of Propositions 6:18 and 6:19""; ""9. The groups l[sub(*)](K(n))""; ""10. The spectra {K(E)}""; ""Chapter III: Splitting of l â? I""; ""11. The spectra K and l""; ""12. The Map f : K â?? l â? I"" |
""13. Properties of f[sub(*)] : HZ/p[sub(*)](K) â?? HZ/p[sub(*)] l (â?) I""""14. Eilenberg-MacLane Spectra""; ""15. Properties 13:1 and 13:2""; ""16. Property 13:3""; ""17. Proof of 16:9 and 16:12""; ""18. Proof of Lemma 16:14""; ""19. The map f : K â?? l â? I in integral homology""; ""Chapter IV: The Operations {Q[sup(n)]}""; ""20. The operations {Q[sup(n)]}""; ""21. The operations {Q[sup(n)]} and Steenrod operations""; ""22. The spectrum L""; ""23. Splitting of l â? I""; ""24. The operations k[sub(n)] : L â?? Σ[sup(2n(p-1))]L""; ""25. Relations among the operations {Q[sup(n)]}"" | |
""26. Action of {Q[sup(n)]} on the coefficient ring l(m) [sup(*)](p)""""References"" | |
Titolo autorizzato: | Operations in connective K-theory |
ISBN: | 1-4704-0661-6 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910788896203321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |