Vai al contenuto principale della pagina
Autore: | Komurcugil Hasan |
Titolo: | Advanced control of power converters : techniques and Matlab/Simulink implementation / / Hasan Komurcugil [and four others] |
Pubblicazione: | Hoboken, New Jersey : , : Wiley, , [2023] |
©2023 | |
Descrizione fisica: | 1 online resource (467 pages) |
Disciplina: | 621.3815322 |
Soggetto topico: | Convertidors de corrent elèctric |
Control no lineal, Teoria de | |
Electric current converters | |
Nonlinear control theory | |
Soggetto non controllato: | Electronics |
Electric Power | |
System Theory | |
Technology & Engineering | |
Science | |
Persona (resp. second.): | BayhanSertac |
GuzmanRamon | |
MalinowskiMariusz | |
Abu-RubHaitham | |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- List of Abbreviations -- Preface -- Acknowledgment -- About the Companion Website -- Chapter 1 Introduction -- 1.1 General Remarks -- 1.2 Basic Closed-Loop Control for Power Converters -- 1.3 Mathematical Modeling of Power Converters -- 1.4 Basic Control Objectives -- 1.4.1 Closed-Loop Stability -- 1.4.2 Settling Time -- 1.4.3 Steady-State Error -- 1.4.4 Robustness to Parameter Variations and Disturbances -- 1.5 Performance Evaluation -- 1.5.1 Simulation-Based Method -- 1.5.2 Experimental Method -- 1.6 Contents of the Book -- References -- Chapter 2 Introduction to Advanced Control Methods -- 2.1 Classical Control Methods for Power Converters -- 2.2 Sliding Mode Control -- 2.3 Lyapunov Function-Based Control -- 2.3.1 Lyapunov's Linearization Method -- 2.3.2 Lyapunov's Direct Method -- 2.4 Model Predictive Control -- 2.4.1 Functional Principle -- 2.4.2 Basic Concept -- 2.4.3 Cost Function -- References -- Chapter 3 Design of Sliding Mode Control for Power Converters -- 3.1 Introduction -- 3.2 Sliding Mode Control of DC-DC Buck and Cuk Converters -- 3.3 Sliding Mode Control Design Procedure -- 3.3.1 Selection of Sliding Surface Function -- 3.3.2 Control Input Design -- 3.4 Chattering Mitigation Techniques -- 3.4.1 Hysteresis Function Technique -- 3.4.2 Boundary Layer Technique -- 3.4.3 State Observer Technique -- 3.5 Modulation Techniques -- 3.5.1 Hysteresis Modulation Technique -- 3.5.2 Sinusoidal Pulse Width Modulation Technique -- 3.5.3 Space Vector Modulation Technique -- 3.6 Other Types of Sliding Mode Control -- 3.6.1 Terminal Sliding Mode Control -- 3.6.2 Second-Order Sliding Mode Control -- References -- Chapter 4 Design of Lyapunov Function-Based Control for Power Converters -- 4.1 Introduction -- 4.2 Lyapunov-Function-Based Control Design Using Direct Method. |
4.3 Lyapunov Function-Based Control of DC-DC Buck Converter -- 4.4 Lyapunov Function-Based Control of DC-DC Boost Converter -- References -- Chapter 5 Design of Model Predictive Control -- 5.1 Introduction -- 5.2 Predictive Control Methods -- 5.3 FCS Model Predictive Control -- 5.3.1 Design Procedure -- 5.3.2 Tutorial 1: Implementation of FCS-MPC for Three-Phase VSI -- 5.4 CCS Model Predictive Control -- 5.4.1 Incremental Models -- 5.4.2 Predictive Model -- 5.4.3 Cost Function in CCSMPC -- 5.4.4 Cost Function Minimization -- 5.4.5 Receding Control Horizon Principle -- 5.4.6 Closed-Loop of an MPC System -- 5.4.7 Discrete Linear Quadratic Regulators -- 5.4.8 Formulation of the Constraints in MPC -- 5.4.9 Optimization with Equality Constraints -- 5.4.10 Optimization with Inequality Constraints -- 5.4.11 MPC for Multi-Input Multi-Output Systems -- 5.4.12 Tutorial 2: MPC Design For a Grid-Connected VSI in dq Frame -- 5.5 Design and Implementation Issues -- 5.5.1 Cost Function Selection -- 5.5.1.1 Examples for Primary Control Objectives -- 5.5.1.2 Examples for Secondary Control Objectives -- 5.5.2 Weighting Factor Design -- 5.5.2.1 Empirical Selection Method -- 5.5.2.2 Equal-Weighted Cost-Function-Based Selection Method -- 5.5.2.3 Lookup Table-Based Selection Method -- References -- Chapter 6 MATLAB/Simulink Tutorial on Physical Modeling and Experimental Setup -- 6.1 Introduction -- 6.2 Building Simulation Model for Power Converters -- 6.2.1 Building Simulation Model for Single-Phase Grid-Connected Inverter Based on Sliding Mode Control -- 6.2.2 Building Simulation Model for Three-Phase Rectifier Based on Lyapunov-Function-Based Control -- 6.2.3 Building Simulation Model for Quasi-Z Source Three-Phase Four-Leg Inverter Based on Model Predictive Control -- 6.2.4 Building Simulation Model for Distributed Generations in Islanded AC Microgrid. | |
6.3 Building Real-Time Model for a Single-Phase T-Type Rectifier -- 6.4 Building Rapid Control Prototyping for a Single-Phase T-Type Rectifier -- 6.4.1 Components in the Experimental Testbed -- 6.4.1.1 Grid Simulator -- 6.4.1.2 A Single-Phase T-Type Rectifier Prototype -- 6.4.1.3 Measurement Board -- 6.4.1.4 Programmable Load -- 6.4.1.5 Controller -- 6.4.2 Building Control Structure on OP-5707 -- References -- Chapter 7 Sliding Mode Control of Various Power Converters -- 7.1 Introduction -- 7.2 Single-Phase Grid-Connected Inverter with LCL Filter -- 7.2.1 Mathematical Modeling of Grid-Connected Inverter with LCL Filter -- 7.2.2 Sliding Mode Control -- 7.2.3 PWM Signal Generation Using Hysteresis Modulation -- 7.2.3.1 Single-Band Hysteresis Function -- 7.2.3.2 Double-Band Hysteresis Function -- 7.2.4 Switching Frequency Computation -- 7.2.4.1 Switching Frequency Computation with Single-Band Hysteresis Modulation -- 7.2.4.2 Switching Frequency Computation with Double-Band Hysteresis Modulation -- 7.2.5 Selection of Control Gains -- 7.2.6 Simulation Study -- 7.2.7 Experimental Study -- 7.3 Three-Phase Grid-Connected Inverter with LCL Filter -- 7.3.1 Physical Model Equations for a Three-Phase Grid-Connected VSI with an LCL Filter -- 7.3.2 Control System -- 7.3.2.1 Reduced State-Space Model of the Converter -- 7.3.2.2 Model Discretization and KF Adaptive Equation -- 7.3.2.3 Sliding Surfaces with Active Damping Capability -- 7.3.3 Stability Analysis -- 7.3.3.1 Discrete-Time Equivalent Control Deduction -- 7.3.3.2 Closed-Loop System Equations -- 7.3.3.3 Test of Robustness Against Parameters Uncertainties -- 7.3.4 Experimental Study -- 7.3.4.1 Test of Robustness Against Grid Inductance Variations -- 7.3.4.2 Test of Stability in Case of Grid Harmonics Near the Resonance Frequency -- 7.3.4.3 Test of the VSI Against Sudden Changes in the Reference Current. | |
7.3.4.4 Test of the VSI Under Distorted Grid -- 7.3.4.5 Test of the VSI Under Voltage Sags -- 7.3.5 Computational Load and Performances of the Control Algorithm -- 7.4 Three-Phase AC-DC Rectifier -- 7.4.1 Nonlinear Model of the Unity Power Factor Rectifier -- 7.4.2 Problem Formulation -- 7.4.3 Axis-Decoupling Based on an Estimator -- 7.4.4 Control System -- 7.4.4.1 Kalman Filter -- 7.4.4.2 Practical Considerations: Election of Q and R Matrices -- 7.4.4.3 Practical Considerations: Computational Burden Reduction -- 7.4.5 Sliding Mode Control -- 7.4.5.1 Inner Control Loop -- 7.4.5.2 Outer Control Loop -- 7.4.6 Hysteresis Band Generator with Switching Decision Algorithm -- 7.4.7 Experimental Study -- 7.5 Three-Phase Transformerless Dynamic Voltage Restorer -- 7.5.1 Mathematical Modeling of Transformerless Dynamic Voltage Restorer -- 7.5.2 Design of Sliding Mode Control for TDVR -- 7.5.3 Time-Varying Switching Frequency with Single-Band Hysteresis -- 7.5.4 Constant Switching Frequency with Boundary Layer -- 7.5.5 Simulation Study -- 7.5.6 Experimental Study -- 7.6 Three-Phase Shunt Active Power Filter -- 7.6.1 Nonlinear Model of the SAPF -- 7.6.2 Problem Formulation -- 7.6.3 Control System -- 7.6.3.1 State Model of the Converter -- 7.6.3.2 Kalman Filter -- 7.6.3.3 Sliding Mode Control -- 7.6.3.4 Hysteresis Band Generator with SDA -- 7.6.4 Experimental Study -- 7.6.4.1 Response of the SAPF to Load Variations -- 7.6.4.2 SAPF Performances Under a Distorted Grid -- 7.6.4.3 SAPF Performances Under Grid Voltage Sags -- 7.6.4.4 Spectrum of the Control Signal -- References -- Chapter 8 Design of Lyapunov Function-Based Control of Various Power Converters -- 8.1 Introduction -- 8.2 Single-Phase Grid-Connected Inverter with LCL Filter -- 8.2.1 Mathematical Modeling and Controller Design -- 8.2.2 Controller Modification with Capacitor Voltage Feedback. | |
8.2.3 Inverter-Side Current Reference Generation Using Proportional-Resonant Controller -- 8.2.4 Grid Current Transfer Function -- 8.2.5 Harmonic Attenuation and Harmonic Impedance -- 8.2.6 Results -- 8.3 Single-Phase Quasi-Z-Source Grid-Connected Inverter with LCL Filter -- 8.3.1 Quasi-Z-Source Network Modeling -- 8.3.2 Grid-Connected Inverter Modeling -- 8.3.3 Control of Quasi-Z-Source Network -- 8.3.4 Control of Grid-Connected Inverter -- 8.3.5 Reference Generation Using Cascaded PR Control -- 8.3.6 Results -- 8.4 Single-Phase Uninterruptible Power Supply Inverter -- 8.4.1 Mathematical Modeling of Uninterruptible Power Supply Inverter -- 8.4.2 Controller Design -- 8.4.3 Criteria for Selecting Control Parameters -- 8.4.4 Results -- 8.5 Three-Phase Voltage-Source AC-DC Rectifier -- 8.5.1 Mathematical Modeling of Rectifier -- 8.5.2 Controller Design -- 8.5.3 Results -- References -- Chapter 9 Model Predictive Control of Various Converters -- 9.1 CCS MPC Method for a Three-Phase Grid-Connected VSI -- 9.1.1 Model Predictive Control Design -- 9.1.1.1 VSI Incremental Model with an Embedded Integrator -- 9.1.1.2 Predictive Model of the Converter -- 9.1.1.3 Cost Function Minimization -- 9.1.1.4 Inclusion of Constraints -- 9.1.2 MATLAB®/Simulink® Implementation -- 9.1.3 Simulation Studies -- 9.2 Model Predictive Control Method for Single-Phase Three-Level Shunt Active Filter -- 9.2.1 Modeling of Shunt Active Filter (SAPF) -- 9.2.2 The Energy-Function-Based MPC -- 9.2.2.1 Design of Energy-Function-Based MPC -- 9.2.2.2 Discrete-Time Model -- 9.2.3 Experimental Studies -- 9.2.3.1 Steady-State and Dynamic Response Tests -- 9.2.3.2 Comparison with Classical MPC Method -- 9.3 Model Predictive Control of Quasi-Z Source Three-Phase Four-Leg Inverter -- 9.3.1 qZS Four-Leg Inverter Model -- 9.3.2 MPC Algorithm -- 9.3.2.1 Determination of References. | |
9.3.2.2 Discrete-Time Models of the System. | |
Sommario/riassunto: | Advanced Control of Power Converters Unique resource presenting advanced nonlinear control methods for power converters, plus simulation, controller design, analyses, and case studies Advanced Control of Power Converters equips readers with the latest knowledge of three control methods developed for power converters: nonlinear control methods such as sliding mode control, Lyapunov-function-based control, and model predictive control. Readers will learn about the design of each control method, and simulation case studies and results will be presented and discussed to point out the behavior of each control method in different applications. In this way, readers wishing to learn these control methods can gain insight on how to design and simulate each control method easily. The book is organized into three clear sections: introduction of classical and advanced control methods, design of advanced control methods, and case studies. Each control method is supported by simulation examples along with Simulink models which are provided on a separate website. Contributed to by five highly qualified authors, Advanced Control of Power Converters covers sample topics such as: Mathematical modeling of single- and three-phase grid-connected inverter with LCL filter, three-phase dynamic voltage restorer, design of sliding mode control and switching frequency computation under single- and double-band hysteresis modulations Modeling of single-phase UPS inverter and three-phase rectifier and their Lyapunov-function-based control design for global stability assurance Design of model predictive control for single-phase T-type rectifier, three-phase shunt active power filter, three-phase quasi-Z-source inverter, three-phase rectifier, distributed generation inverters in islanded ac microgrids How to realize the Simulink models in sliding mode control, Lyapunov-function-based control and model predictive control How to build and run a real-time model as well as rapid prototyping of power converter by using OPAL-RT simulator Advanced Control of Power Converters is an ideal resource on the subject for researchers, engineering professionals, and undergraduate/graduate students in electrical engineering and mechatronics; as an advanced level book, and it is expected that readers will have prior knowledge of power converters and control systems. |
Titolo autorizzato: | Advanced control of power converters |
ISBN: | 9781119854432 |
1-119-85443-1 | |
1-119-85441-5 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910735566603321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |